This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Tarski class is well-orderable. (Contributed by Mario Carneiro, 20-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskwe2 | |- ( T e. Tarski -> T e. dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi | |- ( y e. ~P T -> y C_ T ) |
|
| 2 | tskssel | |- ( ( T e. Tarski /\ y C_ T /\ y ~< T ) -> y e. T ) |
|
| 3 | 2 | 3exp | |- ( T e. Tarski -> ( y C_ T -> ( y ~< T -> y e. T ) ) ) |
| 4 | 1 3 | syl5 | |- ( T e. Tarski -> ( y e. ~P T -> ( y ~< T -> y e. T ) ) ) |
| 5 | 4 | ralrimiv | |- ( T e. Tarski -> A. y e. ~P T ( y ~< T -> y e. T ) ) |
| 6 | rabss | |- ( { y e. ~P T | y ~< T } C_ T <-> A. y e. ~P T ( y ~< T -> y e. T ) ) |
|
| 7 | 5 6 | sylibr | |- ( T e. Tarski -> { y e. ~P T | y ~< T } C_ T ) |
| 8 | tskwe | |- ( ( T e. Tarski /\ { y e. ~P T | y ~< T } C_ T ) -> T e. dom card ) |
|
| 9 | 7 8 | mpdan | |- ( T e. Tarski -> T e. dom card ) |