This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian product of two parts of a Tarski class is a part of the class. (Contributed by FL, 22-Feb-2011) (Proof shortened by Mario Carneiro, 20-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskxpss |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 | ||
| 2 | tskop | ||
| 3 | eleq1a | ||
| 4 | 2 3 | syl | |
| 5 | 4 | 3expib | |
| 6 | 5 | rexlimdvv | |
| 7 | 1 6 | biimtrid | |
| 8 | 7 | ssrdv | |
| 9 | xpss12 | ||
| 10 | sstr | ||
| 11 | 10 | expcom | |
| 12 | 8 9 11 | syl2im | |
| 13 | 12 | 3impib |