This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If A and B are members of a Tarski class, their ordered pair is also an element of the class. JFM CLASSES2 th. 4. (Contributed by FL, 22-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tskop | |- ( ( T e. Tarski /\ A e. T /\ B e. T ) -> <. A , B >. e. T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfopg | |- ( ( A e. T /\ B e. T ) -> <. A , B >. = { { A } , { A , B } } ) |
|
| 2 | 1 | 3adant1 | |- ( ( T e. Tarski /\ A e. T /\ B e. T ) -> <. A , B >. = { { A } , { A , B } } ) |
| 3 | simp1 | |- ( ( T e. Tarski /\ A e. T /\ B e. T ) -> T e. Tarski ) |
|
| 4 | tsksn | |- ( ( T e. Tarski /\ A e. T ) -> { A } e. T ) |
|
| 5 | 4 | 3adant3 | |- ( ( T e. Tarski /\ A e. T /\ B e. T ) -> { A } e. T ) |
| 6 | tskpr | |- ( ( T e. Tarski /\ A e. T /\ B e. T ) -> { A , B } e. T ) |
|
| 7 | tskpr | |- ( ( T e. Tarski /\ { A } e. T /\ { A , B } e. T ) -> { { A } , { A , B } } e. T ) |
|
| 8 | 3 5 6 7 | syl3anc | |- ( ( T e. Tarski /\ A e. T /\ B e. T ) -> { { A } , { A , B } } e. T ) |
| 9 | 2 8 | eqeltrd | |- ( ( T e. Tarski /\ A e. T /\ B e. T ) -> <. A , B >. e. T ) |