This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opnneiss | |- ( ( J e. Top /\ N e. J /\ S C_ N ) -> N e. ( ( nei ` J ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( J e. Top /\ N e. J /\ S C_ N ) -> S C_ N ) |
|
| 2 | eqid | |- U. J = U. J |
|
| 3 | 2 | eltopss | |- ( ( J e. Top /\ N e. J ) -> N C_ U. J ) |
| 4 | sstr | |- ( ( S C_ N /\ N C_ U. J ) -> S C_ U. J ) |
|
| 5 | 4 | ancoms | |- ( ( N C_ U. J /\ S C_ N ) -> S C_ U. J ) |
| 6 | 3 5 | stoic3 | |- ( ( J e. Top /\ N e. J /\ S C_ N ) -> S C_ U. J ) |
| 7 | 2 | opnneissb | |- ( ( J e. Top /\ N e. J /\ S C_ U. J ) -> ( S C_ N <-> N e. ( ( nei ` J ) ` S ) ) ) |
| 8 | 6 7 | syld3an3 | |- ( ( J e. Top /\ N e. J /\ S C_ N ) -> ( S C_ N <-> N e. ( ( nei ` J ) ` S ) ) ) |
| 9 | 1 8 | mpbid | |- ( ( J e. Top /\ N e. J /\ S C_ N ) -> N e. ( ( nei ` J ) ` S ) ) |