This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpmulg.j | |- J = ( TopOpen ` G ) |
|
| tgpmulg.t | |- .x. = ( .g ` G ) |
||
| tgpmulg.b | |- B = ( Base ` G ) |
||
| Assertion | tgpmulg | |- ( ( G e. TopGrp /\ N e. ZZ ) -> ( x e. B |-> ( N .x. x ) ) e. ( J Cn J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpmulg.j | |- J = ( TopOpen ` G ) |
|
| 2 | tgpmulg.t | |- .x. = ( .g ` G ) |
|
| 3 | tgpmulg.b | |- B = ( Base ` G ) |
|
| 4 | tgptmd | |- ( G e. TopGrp -> G e. TopMnd ) |
|
| 5 | 1 2 3 | tmdmulg | |- ( ( G e. TopMnd /\ N e. NN0 ) -> ( x e. B |-> ( N .x. x ) ) e. ( J Cn J ) ) |
| 6 | 4 5 | sylan | |- ( ( G e. TopGrp /\ N e. NN0 ) -> ( x e. B |-> ( N .x. x ) ) e. ( J Cn J ) ) |
| 7 | 6 | adantlr | |- ( ( ( G e. TopGrp /\ N e. ZZ ) /\ N e. NN0 ) -> ( x e. B |-> ( N .x. x ) ) e. ( J Cn J ) ) |
| 8 | simpllr | |- ( ( ( ( G e. TopGrp /\ N e. ZZ ) /\ -u N e. NN ) /\ x e. B ) -> N e. ZZ ) |
|
| 9 | 8 | zcnd | |- ( ( ( ( G e. TopGrp /\ N e. ZZ ) /\ -u N e. NN ) /\ x e. B ) -> N e. CC ) |
| 10 | 9 | negnegd | |- ( ( ( ( G e. TopGrp /\ N e. ZZ ) /\ -u N e. NN ) /\ x e. B ) -> -u -u N = N ) |
| 11 | 10 | oveq1d | |- ( ( ( ( G e. TopGrp /\ N e. ZZ ) /\ -u N e. NN ) /\ x e. B ) -> ( -u -u N .x. x ) = ( N .x. x ) ) |
| 12 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 13 | 3 2 12 | mulgnegnn | |- ( ( -u N e. NN /\ x e. B ) -> ( -u -u N .x. x ) = ( ( invg ` G ) ` ( -u N .x. x ) ) ) |
| 14 | 13 | adantll | |- ( ( ( ( G e. TopGrp /\ N e. ZZ ) /\ -u N e. NN ) /\ x e. B ) -> ( -u -u N .x. x ) = ( ( invg ` G ) ` ( -u N .x. x ) ) ) |
| 15 | 11 14 | eqtr3d | |- ( ( ( ( G e. TopGrp /\ N e. ZZ ) /\ -u N e. NN ) /\ x e. B ) -> ( N .x. x ) = ( ( invg ` G ) ` ( -u N .x. x ) ) ) |
| 16 | 15 | mpteq2dva | |- ( ( ( G e. TopGrp /\ N e. ZZ ) /\ -u N e. NN ) -> ( x e. B |-> ( N .x. x ) ) = ( x e. B |-> ( ( invg ` G ) ` ( -u N .x. x ) ) ) ) |
| 17 | 1 3 | tgptopon | |- ( G e. TopGrp -> J e. ( TopOn ` B ) ) |
| 18 | 17 | ad2antrr | |- ( ( ( G e. TopGrp /\ N e. ZZ ) /\ -u N e. NN ) -> J e. ( TopOn ` B ) ) |
| 19 | 4 | adantr | |- ( ( G e. TopGrp /\ N e. ZZ ) -> G e. TopMnd ) |
| 20 | nnnn0 | |- ( -u N e. NN -> -u N e. NN0 ) |
|
| 21 | 1 2 3 | tmdmulg | |- ( ( G e. TopMnd /\ -u N e. NN0 ) -> ( x e. B |-> ( -u N .x. x ) ) e. ( J Cn J ) ) |
| 22 | 19 20 21 | syl2an | |- ( ( ( G e. TopGrp /\ N e. ZZ ) /\ -u N e. NN ) -> ( x e. B |-> ( -u N .x. x ) ) e. ( J Cn J ) ) |
| 23 | 1 12 | tgpinv | |- ( G e. TopGrp -> ( invg ` G ) e. ( J Cn J ) ) |
| 24 | 23 | ad2antrr | |- ( ( ( G e. TopGrp /\ N e. ZZ ) /\ -u N e. NN ) -> ( invg ` G ) e. ( J Cn J ) ) |
| 25 | 18 22 24 | cnmpt11f | |- ( ( ( G e. TopGrp /\ N e. ZZ ) /\ -u N e. NN ) -> ( x e. B |-> ( ( invg ` G ) ` ( -u N .x. x ) ) ) e. ( J Cn J ) ) |
| 26 | 16 25 | eqeltrd | |- ( ( ( G e. TopGrp /\ N e. ZZ ) /\ -u N e. NN ) -> ( x e. B |-> ( N .x. x ) ) e. ( J Cn J ) ) |
| 27 | 26 | adantrl | |- ( ( ( G e. TopGrp /\ N e. ZZ ) /\ ( N e. RR /\ -u N e. NN ) ) -> ( x e. B |-> ( N .x. x ) ) e. ( J Cn J ) ) |
| 28 | simpr | |- ( ( G e. TopGrp /\ N e. ZZ ) -> N e. ZZ ) |
|
| 29 | elznn0nn | |- ( N e. ZZ <-> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
|
| 30 | 28 29 | sylib | |- ( ( G e. TopGrp /\ N e. ZZ ) -> ( N e. NN0 \/ ( N e. RR /\ -u N e. NN ) ) ) |
| 31 | 7 27 30 | mpjaodan | |- ( ( G e. TopGrp /\ N e. ZZ ) -> ( x e. B |-> ( N .x. x ) ) e. ( J Cn J ) ) |