This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a topological monoid, the group multiple function is jointly continuous (although this is not saying much as one of the factors is discrete). Use zdis to write the left topology as a subset of the complex numbers. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgpmulg.j | |- J = ( TopOpen ` G ) |
|
| tgpmulg.t | |- .x. = ( .g ` G ) |
||
| Assertion | tgpmulg2 | |- ( G e. TopGrp -> .x. e. ( ( ~P ZZ tX J ) Cn J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgpmulg.j | |- J = ( TopOpen ` G ) |
|
| 2 | tgpmulg.t | |- .x. = ( .g ` G ) |
|
| 3 | zex | |- ZZ e. _V |
|
| 4 | 3 | a1i | |- ( G e. TopGrp -> ZZ e. _V ) |
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 6 | 1 5 | tgptopon | |- ( G e. TopGrp -> J e. ( TopOn ` ( Base ` G ) ) ) |
| 7 | topontop | |- ( J e. ( TopOn ` ( Base ` G ) ) -> J e. Top ) |
|
| 8 | 6 7 | syl | |- ( G e. TopGrp -> J e. Top ) |
| 9 | 5 2 | mulgfn | |- .x. Fn ( ZZ X. ( Base ` G ) ) |
| 10 | 9 | a1i | |- ( G e. TopGrp -> .x. Fn ( ZZ X. ( Base ` G ) ) ) |
| 11 | 1 2 5 | tgpmulg | |- ( ( G e. TopGrp /\ n e. ZZ ) -> ( x e. ( Base ` G ) |-> ( n .x. x ) ) e. ( J Cn J ) ) |
| 12 | 4 6 8 10 11 | txdis1cn | |- ( G e. TopGrp -> .x. e. ( ( ~P ZZ tX J ) Cn J ) ) |