This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. Show C is an acceptable function. (Contributed by NM, 15-Aug-1994) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| tfrlem.3 | |- C = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
||
| Assertion | tfrlem12 | |- ( recs ( F ) e. _V -> C e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | tfrlem.3 | |- C = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
|
| 3 | 1 | tfrlem8 | |- Ord dom recs ( F ) |
| 4 | 3 | a1i | |- ( recs ( F ) e. _V -> Ord dom recs ( F ) ) |
| 5 | dmexg | |- ( recs ( F ) e. _V -> dom recs ( F ) e. _V ) |
|
| 6 | elon2 | |- ( dom recs ( F ) e. On <-> ( Ord dom recs ( F ) /\ dom recs ( F ) e. _V ) ) |
|
| 7 | 4 5 6 | sylanbrc | |- ( recs ( F ) e. _V -> dom recs ( F ) e. On ) |
| 8 | onsuc | |- ( dom recs ( F ) e. On -> suc dom recs ( F ) e. On ) |
|
| 9 | 1 2 | tfrlem10 | |- ( dom recs ( F ) e. On -> C Fn suc dom recs ( F ) ) |
| 10 | 1 2 | tfrlem11 | |- ( dom recs ( F ) e. On -> ( z e. suc dom recs ( F ) -> ( C ` z ) = ( F ` ( C |` z ) ) ) ) |
| 11 | 10 | ralrimiv | |- ( dom recs ( F ) e. On -> A. z e. suc dom recs ( F ) ( C ` z ) = ( F ` ( C |` z ) ) ) |
| 12 | fveq2 | |- ( z = y -> ( C ` z ) = ( C ` y ) ) |
|
| 13 | reseq2 | |- ( z = y -> ( C |` z ) = ( C |` y ) ) |
|
| 14 | 13 | fveq2d | |- ( z = y -> ( F ` ( C |` z ) ) = ( F ` ( C |` y ) ) ) |
| 15 | 12 14 | eqeq12d | |- ( z = y -> ( ( C ` z ) = ( F ` ( C |` z ) ) <-> ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
| 16 | 15 | cbvralvw | |- ( A. z e. suc dom recs ( F ) ( C ` z ) = ( F ` ( C |` z ) ) <-> A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) |
| 17 | 11 16 | sylib | |- ( dom recs ( F ) e. On -> A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) |
| 18 | fneq2 | |- ( x = suc dom recs ( F ) -> ( C Fn x <-> C Fn suc dom recs ( F ) ) ) |
|
| 19 | raleq | |- ( x = suc dom recs ( F ) -> ( A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) <-> A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
|
| 20 | 18 19 | anbi12d | |- ( x = suc dom recs ( F ) -> ( ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) <-> ( C Fn suc dom recs ( F ) /\ A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) |
| 21 | 20 | rspcev | |- ( ( suc dom recs ( F ) e. On /\ ( C Fn suc dom recs ( F ) /\ A. y e. suc dom recs ( F ) ( C ` y ) = ( F ` ( C |` y ) ) ) ) -> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
| 22 | 8 9 17 21 | syl12anc | |- ( dom recs ( F ) e. On -> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
| 23 | 7 22 | syl | |- ( recs ( F ) e. _V -> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
| 24 | snex | |- { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } e. _V |
|
| 25 | unexg | |- ( ( recs ( F ) e. _V /\ { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } e. _V ) -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. _V ) |
|
| 26 | 24 25 | mpan2 | |- ( recs ( F ) e. _V -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) e. _V ) |
| 27 | 2 26 | eqeltrid | |- ( recs ( F ) e. _V -> C e. _V ) |
| 28 | fneq1 | |- ( f = C -> ( f Fn x <-> C Fn x ) ) |
|
| 29 | fveq1 | |- ( f = C -> ( f ` y ) = ( C ` y ) ) |
|
| 30 | reseq1 | |- ( f = C -> ( f |` y ) = ( C |` y ) ) |
|
| 31 | 30 | fveq2d | |- ( f = C -> ( F ` ( f |` y ) ) = ( F ` ( C |` y ) ) ) |
| 32 | 29 31 | eqeq12d | |- ( f = C -> ( ( f ` y ) = ( F ` ( f |` y ) ) <-> ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
| 33 | 32 | ralbidv | |- ( f = C -> ( A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) <-> A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) |
| 34 | 28 33 | anbi12d | |- ( f = C -> ( ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) |
| 35 | 34 | rexbidv | |- ( f = C -> ( E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) <-> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) |
| 36 | 35 1 | elab2g | |- ( C e. _V -> ( C e. A <-> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) |
| 37 | 27 36 | syl | |- ( recs ( F ) e. _V -> ( C e. A <-> E. x e. On ( C Fn x /\ A. y e. x ( C ` y ) = ( F ` ( C |` y ) ) ) ) ) |
| 38 | 23 37 | mpbird | |- ( recs ( F ) e. _V -> C e. A ) |