This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. We define class C by extending recs with one ordered pair. We will assume, falsely, that domain of recs is a member of, and thus not equal to, On . Using this assumption we will prove facts about C that will lead to a contradiction in tfrlem14 , thus showing the domain of recs does in fact equal On . Here we show (under the false assumption) that C is a function extending the domain of recs ( F ) by one. (Contributed by NM, 14-Aug-1994) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| tfrlem.3 | |- C = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
||
| Assertion | tfrlem10 | |- ( dom recs ( F ) e. On -> C Fn suc dom recs ( F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | tfrlem.3 | |- C = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
|
| 3 | fvex | |- ( F ` recs ( F ) ) e. _V |
|
| 4 | funsng | |- ( ( dom recs ( F ) e. On /\ ( F ` recs ( F ) ) e. _V ) -> Fun { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
|
| 5 | 3 4 | mpan2 | |- ( dom recs ( F ) e. On -> Fun { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
| 6 | 1 | tfrlem7 | |- Fun recs ( F ) |
| 7 | 5 6 | jctil | |- ( dom recs ( F ) e. On -> ( Fun recs ( F ) /\ Fun { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) |
| 8 | 3 | dmsnop | |- dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } = { dom recs ( F ) } |
| 9 | 8 | ineq2i | |- ( dom recs ( F ) i^i dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = ( dom recs ( F ) i^i { dom recs ( F ) } ) |
| 10 | 1 | tfrlem8 | |- Ord dom recs ( F ) |
| 11 | orddisj | |- ( Ord dom recs ( F ) -> ( dom recs ( F ) i^i { dom recs ( F ) } ) = (/) ) |
|
| 12 | 10 11 | ax-mp | |- ( dom recs ( F ) i^i { dom recs ( F ) } ) = (/) |
| 13 | 9 12 | eqtri | |- ( dom recs ( F ) i^i dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = (/) |
| 14 | funun | |- ( ( ( Fun recs ( F ) /\ Fun { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) /\ ( dom recs ( F ) i^i dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = (/) ) -> Fun ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) |
|
| 15 | 7 13 14 | sylancl | |- ( dom recs ( F ) e. On -> Fun ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) |
| 16 | 8 | uneq2i | |- ( dom recs ( F ) u. dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = ( dom recs ( F ) u. { dom recs ( F ) } ) |
| 17 | dmun | |- dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = ( dom recs ( F ) u. dom { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
|
| 18 | df-suc | |- suc dom recs ( F ) = ( dom recs ( F ) u. { dom recs ( F ) } ) |
|
| 19 | 16 17 18 | 3eqtr4i | |- dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = suc dom recs ( F ) |
| 20 | df-fn | |- ( ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) <-> ( Fun ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) /\ dom ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) = suc dom recs ( F ) ) ) |
|
| 21 | 15 19 20 | sylanblrc | |- ( dom recs ( F ) e. On -> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) ) |
| 22 | 2 | fneq1i | |- ( C Fn suc dom recs ( F ) <-> ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) Fn suc dom recs ( F ) ) |
| 23 | 21 22 | sylibr | |- ( dom recs ( F ) e. On -> C Fn suc dom recs ( F ) ) |