This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for transfinite recursion. Compute the value of C . (Contributed by NM, 18-Aug-1994) (Revised by Mario Carneiro, 9-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| tfrlem.3 | |- C = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
||
| Assertion | tfrlem11 | |- ( dom recs ( F ) e. On -> ( B e. suc dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 | |- A = { f | E. x e. On ( f Fn x /\ A. y e. x ( f ` y ) = ( F ` ( f |` y ) ) ) } |
|
| 2 | tfrlem.3 | |- C = ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
|
| 3 | elsuci | |- ( B e. suc dom recs ( F ) -> ( B e. dom recs ( F ) \/ B = dom recs ( F ) ) ) |
|
| 4 | 1 2 | tfrlem10 | |- ( dom recs ( F ) e. On -> C Fn suc dom recs ( F ) ) |
| 5 | fnfun | |- ( C Fn suc dom recs ( F ) -> Fun C ) |
|
| 6 | 4 5 | syl | |- ( dom recs ( F ) e. On -> Fun C ) |
| 7 | ssun1 | |- recs ( F ) C_ ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
|
| 8 | 7 2 | sseqtrri | |- recs ( F ) C_ C |
| 9 | 1 | tfrlem9 | |- ( B e. dom recs ( F ) -> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) |
| 10 | funssfv | |- ( ( Fun C /\ recs ( F ) C_ C /\ B e. dom recs ( F ) ) -> ( C ` B ) = ( recs ( F ) ` B ) ) |
|
| 11 | 10 | 3expa | |- ( ( ( Fun C /\ recs ( F ) C_ C ) /\ B e. dom recs ( F ) ) -> ( C ` B ) = ( recs ( F ) ` B ) ) |
| 12 | 11 | adantrl | |- ( ( ( Fun C /\ recs ( F ) C_ C ) /\ ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) ) -> ( C ` B ) = ( recs ( F ) ` B ) ) |
| 13 | onelss | |- ( dom recs ( F ) e. On -> ( B e. dom recs ( F ) -> B C_ dom recs ( F ) ) ) |
|
| 14 | 13 | imp | |- ( ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) -> B C_ dom recs ( F ) ) |
| 15 | fun2ssres | |- ( ( Fun C /\ recs ( F ) C_ C /\ B C_ dom recs ( F ) ) -> ( C |` B ) = ( recs ( F ) |` B ) ) |
|
| 16 | 15 | 3expa | |- ( ( ( Fun C /\ recs ( F ) C_ C ) /\ B C_ dom recs ( F ) ) -> ( C |` B ) = ( recs ( F ) |` B ) ) |
| 17 | 16 | fveq2d | |- ( ( ( Fun C /\ recs ( F ) C_ C ) /\ B C_ dom recs ( F ) ) -> ( F ` ( C |` B ) ) = ( F ` ( recs ( F ) |` B ) ) ) |
| 18 | 14 17 | sylan2 | |- ( ( ( Fun C /\ recs ( F ) C_ C ) /\ ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) ) -> ( F ` ( C |` B ) ) = ( F ` ( recs ( F ) |` B ) ) ) |
| 19 | 12 18 | eqeq12d | |- ( ( ( Fun C /\ recs ( F ) C_ C ) /\ ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) ) -> ( ( C ` B ) = ( F ` ( C |` B ) ) <-> ( recs ( F ) ` B ) = ( F ` ( recs ( F ) |` B ) ) ) ) |
| 20 | 9 19 | imbitrrid | |- ( ( ( Fun C /\ recs ( F ) C_ C ) /\ ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) ) -> ( B e. dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) |
| 21 | 8 20 | mpanl2 | |- ( ( Fun C /\ ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) ) -> ( B e. dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) |
| 22 | 6 21 | sylan | |- ( ( dom recs ( F ) e. On /\ ( dom recs ( F ) e. On /\ B e. dom recs ( F ) ) ) -> ( B e. dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) |
| 23 | 22 | exp32 | |- ( dom recs ( F ) e. On -> ( dom recs ( F ) e. On -> ( B e. dom recs ( F ) -> ( B e. dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) ) ) |
| 24 | 23 | pm2.43i | |- ( dom recs ( F ) e. On -> ( B e. dom recs ( F ) -> ( B e. dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) ) |
| 25 | 24 | pm2.43d | |- ( dom recs ( F ) e. On -> ( B e. dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) |
| 26 | opex | |- <. B , ( F ` ( C |` B ) ) >. e. _V |
|
| 27 | 26 | snid | |- <. B , ( F ` ( C |` B ) ) >. e. { <. B , ( F ` ( C |` B ) ) >. } |
| 28 | opeq1 | |- ( B = dom recs ( F ) -> <. B , ( F ` ( C |` B ) ) >. = <. dom recs ( F ) , ( F ` ( C |` B ) ) >. ) |
|
| 29 | 28 | adantl | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> <. B , ( F ` ( C |` B ) ) >. = <. dom recs ( F ) , ( F ` ( C |` B ) ) >. ) |
| 30 | eqimss | |- ( B = dom recs ( F ) -> B C_ dom recs ( F ) ) |
|
| 31 | 8 15 | mp3an2 | |- ( ( Fun C /\ B C_ dom recs ( F ) ) -> ( C |` B ) = ( recs ( F ) |` B ) ) |
| 32 | 6 30 31 | syl2an | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> ( C |` B ) = ( recs ( F ) |` B ) ) |
| 33 | reseq2 | |- ( B = dom recs ( F ) -> ( recs ( F ) |` B ) = ( recs ( F ) |` dom recs ( F ) ) ) |
|
| 34 | 1 | tfrlem6 | |- Rel recs ( F ) |
| 35 | resdm | |- ( Rel recs ( F ) -> ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) ) |
|
| 36 | 34 35 | ax-mp | |- ( recs ( F ) |` dom recs ( F ) ) = recs ( F ) |
| 37 | 33 36 | eqtrdi | |- ( B = dom recs ( F ) -> ( recs ( F ) |` B ) = recs ( F ) ) |
| 38 | 37 | adantl | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> ( recs ( F ) |` B ) = recs ( F ) ) |
| 39 | 32 38 | eqtrd | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> ( C |` B ) = recs ( F ) ) |
| 40 | 39 | fveq2d | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> ( F ` ( C |` B ) ) = ( F ` recs ( F ) ) ) |
| 41 | 40 | opeq2d | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> <. dom recs ( F ) , ( F ` ( C |` B ) ) >. = <. dom recs ( F ) , ( F ` recs ( F ) ) >. ) |
| 42 | 29 41 | eqtrd | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> <. B , ( F ` ( C |` B ) ) >. = <. dom recs ( F ) , ( F ` recs ( F ) ) >. ) |
| 43 | 42 | sneqd | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> { <. B , ( F ` ( C |` B ) ) >. } = { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
| 44 | 27 43 | eleqtrid | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> <. B , ( F ` ( C |` B ) ) >. e. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) |
| 45 | elun2 | |- ( <. B , ( F ` ( C |` B ) ) >. e. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } -> <. B , ( F ` ( C |` B ) ) >. e. ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) |
|
| 46 | 44 45 | syl | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> <. B , ( F ` ( C |` B ) ) >. e. ( recs ( F ) u. { <. dom recs ( F ) , ( F ` recs ( F ) ) >. } ) ) |
| 47 | 46 2 | eleqtrrdi | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> <. B , ( F ` ( C |` B ) ) >. e. C ) |
| 48 | simpr | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> B = dom recs ( F ) ) |
|
| 49 | sucidg | |- ( dom recs ( F ) e. On -> dom recs ( F ) e. suc dom recs ( F ) ) |
|
| 50 | 49 | adantr | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> dom recs ( F ) e. suc dom recs ( F ) ) |
| 51 | 48 50 | eqeltrd | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> B e. suc dom recs ( F ) ) |
| 52 | fnopfvb | |- ( ( C Fn suc dom recs ( F ) /\ B e. suc dom recs ( F ) ) -> ( ( C ` B ) = ( F ` ( C |` B ) ) <-> <. B , ( F ` ( C |` B ) ) >. e. C ) ) |
|
| 53 | 4 51 52 | syl2an2r | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> ( ( C ` B ) = ( F ` ( C |` B ) ) <-> <. B , ( F ` ( C |` B ) ) >. e. C ) ) |
| 54 | 47 53 | mpbird | |- ( ( dom recs ( F ) e. On /\ B = dom recs ( F ) ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) |
| 55 | 54 | ex | |- ( dom recs ( F ) e. On -> ( B = dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) |
| 56 | 25 55 | jaod | |- ( dom recs ( F ) e. On -> ( ( B e. dom recs ( F ) \/ B = dom recs ( F ) ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) |
| 57 | 3 56 | syl5 | |- ( dom recs ( F ) e. On -> ( B e. suc dom recs ( F ) -> ( C ` B ) = ( F ` ( C |` B ) ) ) ) |