This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to express the ordinal property of a class in terms of the class of ordinal numbers. Corollary 7.14 of TakeutiZaring p. 38 and its converse. (Contributed by NM, 1-Jun-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordeleqon | |- ( Ord A <-> ( A e. On \/ A = On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onprc | |- -. On e. _V |
|
| 2 | elex | |- ( On e. A -> On e. _V ) |
|
| 3 | 1 2 | mto | |- -. On e. A |
| 4 | ordon | |- Ord On |
|
| 5 | ordtri3or | |- ( ( Ord A /\ Ord On ) -> ( A e. On \/ A = On \/ On e. A ) ) |
|
| 6 | 4 5 | mpan2 | |- ( Ord A -> ( A e. On \/ A = On \/ On e. A ) ) |
| 7 | df-3or | |- ( ( A e. On \/ A = On \/ On e. A ) <-> ( ( A e. On \/ A = On ) \/ On e. A ) ) |
|
| 8 | 6 7 | sylib | |- ( Ord A -> ( ( A e. On \/ A = On ) \/ On e. A ) ) |
| 9 | 8 | ord | |- ( Ord A -> ( -. ( A e. On \/ A = On ) -> On e. A ) ) |
| 10 | 3 9 | mt3i | |- ( Ord A -> ( A e. On \/ A = On ) ) |
| 11 | eloni | |- ( A e. On -> Ord A ) |
|
| 12 | ordeq | |- ( A = On -> ( Ord A <-> Ord On ) ) |
|
| 13 | 4 12 | mpbiri | |- ( A = On -> Ord A ) |
| 14 | 11 13 | jaoi | |- ( ( A e. On \/ A = On ) -> Ord A ) |
| 15 | 10 14 | impbii | |- ( Ord A <-> ( A e. On \/ A = On ) ) |