This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The isomorphism between terminal categories is unique. (Contributed by Zhi Wang, 26-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcciso.c | |- C = ( CatCat ` U ) |
|
| termcciso.b | |- B = ( Base ` C ) |
||
| termcciso.x | |- ( ph -> X e. B ) |
||
| termcciso.y | |- ( ph -> Y e. B ) |
||
| termcciso.t | |- ( ph -> X e. TermCat ) |
||
| termccisoeu.y | |- ( ph -> Y e. TermCat ) |
||
| Assertion | termccisoeu | |- ( ph -> E! f f e. ( X ( Iso ` C ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcciso.c | |- C = ( CatCat ` U ) |
|
| 2 | termcciso.b | |- B = ( Base ` C ) |
|
| 3 | termcciso.x | |- ( ph -> X e. B ) |
|
| 4 | termcciso.y | |- ( ph -> Y e. B ) |
|
| 5 | termcciso.t | |- ( ph -> X e. TermCat ) |
|
| 6 | termccisoeu.y | |- ( ph -> Y e. TermCat ) |
|
| 7 | 1 2 | elbasfv | |- ( X e. B -> U e. _V ) |
| 8 | 3 7 | syl | |- ( ph -> U e. _V ) |
| 9 | 1 | catccat | |- ( U e. _V -> C e. Cat ) |
| 10 | 8 9 | syl | |- ( ph -> C e. Cat ) |
| 11 | 1 2 8 | catcbas | |- ( ph -> B = ( U i^i Cat ) ) |
| 12 | 3 11 | eleqtrd | |- ( ph -> X e. ( U i^i Cat ) ) |
| 13 | 12 | elin1d | |- ( ph -> X e. U ) |
| 14 | 1 8 13 5 | termcterm | |- ( ph -> X e. ( TermO ` C ) ) |
| 15 | 4 11 | eleqtrd | |- ( ph -> Y e. ( U i^i Cat ) ) |
| 16 | 15 | elin1d | |- ( ph -> Y e. U ) |
| 17 | 1 8 16 6 | termcterm | |- ( ph -> Y e. ( TermO ` C ) ) |
| 18 | 10 14 17 | termoeu1 | |- ( ph -> E! f f e. ( X ( Iso ` C ) Y ) ) |