This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function from at least two elements is not bijective. (Contributed by AV, 30-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nf1oconst | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> -. F : A -1-1-onto-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf1const | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> -. F : A -1-1-> C ) |
|
| 2 | 1 | orcd | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> ( -. F : A -1-1-> C \/ -. F : A -onto-> C ) ) |
| 3 | ianor | |- ( -. ( F : A -1-1-> C /\ F : A -onto-> C ) <-> ( -. F : A -1-1-> C \/ -. F : A -onto-> C ) ) |
|
| 4 | df-f1o | |- ( F : A -1-1-onto-> C <-> ( F : A -1-1-> C /\ F : A -onto-> C ) ) |
|
| 5 | 3 4 | xchnxbir | |- ( -. F : A -1-1-onto-> C <-> ( -. F : A -1-1-> C \/ -. F : A -onto-> C ) ) |
| 6 | 2 5 | sylibr | |- ( ( F : A --> { B } /\ ( X e. A /\ Y e. A /\ X =/= Y ) ) -> -. F : A -1-1-onto-> C ) |