This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract two adjacent symbols from a word in reverse direction. (Contributed by AV, 11-May-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | swrds2m | |- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , N >. ) = <" ( W ` ( N - 2 ) ) ( W ` ( N - 1 ) ) "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz | |- ( N e. ( 2 ... ( # ` W ) ) -> N e. ZZ ) |
|
| 2 | 1 | zcnd | |- ( N e. ( 2 ... ( # ` W ) ) -> N e. CC ) |
| 3 | 2cnd | |- ( N e. ( 2 ... ( # ` W ) ) -> 2 e. CC ) |
|
| 4 | 2 3 | npcand | |- ( N e. ( 2 ... ( # ` W ) ) -> ( ( N - 2 ) + 2 ) = N ) |
| 5 | 4 | eqcomd | |- ( N e. ( 2 ... ( # ` W ) ) -> N = ( ( N - 2 ) + 2 ) ) |
| 6 | 5 | opeq2d | |- ( N e. ( 2 ... ( # ` W ) ) -> <. ( N - 2 ) , N >. = <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) |
| 7 | 6 | oveq2d | |- ( N e. ( 2 ... ( # ` W ) ) -> ( W substr <. ( N - 2 ) , N >. ) = ( W substr <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) ) |
| 8 | 7 | adantl | |- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , N >. ) = ( W substr <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) ) |
| 9 | simpl | |- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> W e. Word V ) |
|
| 10 | elfzuz | |- ( N e. ( 2 ... ( # ` W ) ) -> N e. ( ZZ>= ` 2 ) ) |
|
| 11 | uznn0sub | |- ( N e. ( ZZ>= ` 2 ) -> ( N - 2 ) e. NN0 ) |
|
| 12 | 10 11 | syl | |- ( N e. ( 2 ... ( # ` W ) ) -> ( N - 2 ) e. NN0 ) |
| 13 | 12 | adantl | |- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( N - 2 ) e. NN0 ) |
| 14 | 1cnd | |- ( N e. ( 2 ... ( # ` W ) ) -> 1 e. CC ) |
|
| 15 | 2 3 14 | subsubd | |- ( N e. ( 2 ... ( # ` W ) ) -> ( N - ( 2 - 1 ) ) = ( ( N - 2 ) + 1 ) ) |
| 16 | 2m1e1 | |- ( 2 - 1 ) = 1 |
|
| 17 | 16 | oveq2i | |- ( N - ( 2 - 1 ) ) = ( N - 1 ) |
| 18 | 15 17 | eqtr3di | |- ( N e. ( 2 ... ( # ` W ) ) -> ( ( N - 2 ) + 1 ) = ( N - 1 ) ) |
| 19 | 2eluzge1 | |- 2 e. ( ZZ>= ` 1 ) |
|
| 20 | fzss1 | |- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... ( # ` W ) ) C_ ( 1 ... ( # ` W ) ) ) |
|
| 21 | 19 20 | ax-mp | |- ( 2 ... ( # ` W ) ) C_ ( 1 ... ( # ` W ) ) |
| 22 | 21 | sseli | |- ( N e. ( 2 ... ( # ` W ) ) -> N e. ( 1 ... ( # ` W ) ) ) |
| 23 | fz1fzo0m1 | |- ( N e. ( 1 ... ( # ` W ) ) -> ( N - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
|
| 24 | 22 23 | syl | |- ( N e. ( 2 ... ( # ` W ) ) -> ( N - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 25 | 18 24 | eqeltrd | |- ( N e. ( 2 ... ( # ` W ) ) -> ( ( N - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 26 | 25 | adantl | |- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( ( N - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 27 | swrds2 | |- ( ( W e. Word V /\ ( N - 2 ) e. NN0 /\ ( ( N - 2 ) + 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) = <" ( W ` ( N - 2 ) ) ( W ` ( ( N - 2 ) + 1 ) ) "> ) |
|
| 28 | 9 13 26 27 | syl3anc | |- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , ( ( N - 2 ) + 2 ) >. ) = <" ( W ` ( N - 2 ) ) ( W ` ( ( N - 2 ) + 1 ) ) "> ) |
| 29 | eqidd | |- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W ` ( N - 2 ) ) = ( W ` ( N - 2 ) ) ) |
|
| 30 | 18 | fveq2d | |- ( N e. ( 2 ... ( # ` W ) ) -> ( W ` ( ( N - 2 ) + 1 ) ) = ( W ` ( N - 1 ) ) ) |
| 31 | 30 | adantl | |- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W ` ( ( N - 2 ) + 1 ) ) = ( W ` ( N - 1 ) ) ) |
| 32 | 29 31 | s2eqd | |- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> <" ( W ` ( N - 2 ) ) ( W ` ( ( N - 2 ) + 1 ) ) "> = <" ( W ` ( N - 2 ) ) ( W ` ( N - 1 ) ) "> ) |
| 33 | 8 28 32 | 3eqtrd | |- ( ( W e. Word V /\ N e. ( 2 ... ( # ` W ) ) ) -> ( W substr <. ( N - 2 ) , N >. ) = <" ( W ` ( N - 2 ) ) ( W ` ( N - 1 ) ) "> ) |