This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strict weak order is a partial order. (Contributed by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | swopo.1 | |- ( ( ph /\ ( y e. A /\ z e. A ) ) -> ( y R z -> -. z R y ) ) |
|
| swopo.2 | |- ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( x R y -> ( x R z \/ z R y ) ) ) |
||
| Assertion | swopo | |- ( ph -> R Po A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swopo.1 | |- ( ( ph /\ ( y e. A /\ z e. A ) ) -> ( y R z -> -. z R y ) ) |
|
| 2 | swopo.2 | |- ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( x R y -> ( x R z \/ z R y ) ) ) |
|
| 3 | id | |- ( x e. A -> x e. A ) |
|
| 4 | 3 | ancli | |- ( x e. A -> ( x e. A /\ x e. A ) ) |
| 5 | 1 | ralrimivva | |- ( ph -> A. y e. A A. z e. A ( y R z -> -. z R y ) ) |
| 6 | breq1 | |- ( y = x -> ( y R z <-> x R z ) ) |
|
| 7 | breq2 | |- ( y = x -> ( z R y <-> z R x ) ) |
|
| 8 | 7 | notbid | |- ( y = x -> ( -. z R y <-> -. z R x ) ) |
| 9 | 6 8 | imbi12d | |- ( y = x -> ( ( y R z -> -. z R y ) <-> ( x R z -> -. z R x ) ) ) |
| 10 | breq2 | |- ( z = x -> ( x R z <-> x R x ) ) |
|
| 11 | breq1 | |- ( z = x -> ( z R x <-> x R x ) ) |
|
| 12 | 11 | notbid | |- ( z = x -> ( -. z R x <-> -. x R x ) ) |
| 13 | 10 12 | imbi12d | |- ( z = x -> ( ( x R z -> -. z R x ) <-> ( x R x -> -. x R x ) ) ) |
| 14 | 9 13 | rspc2va | |- ( ( ( x e. A /\ x e. A ) /\ A. y e. A A. z e. A ( y R z -> -. z R y ) ) -> ( x R x -> -. x R x ) ) |
| 15 | 4 5 14 | syl2anr | |- ( ( ph /\ x e. A ) -> ( x R x -> -. x R x ) ) |
| 16 | 15 | pm2.01d | |- ( ( ph /\ x e. A ) -> -. x R x ) |
| 17 | 1 | 3adantr1 | |- ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( y R z -> -. z R y ) ) |
| 18 | 2 | imp | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ x R y ) -> ( x R z \/ z R y ) ) |
| 19 | 18 | orcomd | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ x R y ) -> ( z R y \/ x R z ) ) |
| 20 | 19 | ord | |- ( ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) /\ x R y ) -> ( -. z R y -> x R z ) ) |
| 21 | 20 | expimpd | |- ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( x R y /\ -. z R y ) -> x R z ) ) |
| 22 | 17 21 | sylan2d | |- ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( x R y /\ y R z ) -> x R z ) ) |
| 23 | 16 22 | ispod | |- ( ph -> R Po A ) |