This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | swoer.1 | |- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
|
| Assertion | brdifun | |- ( ( A e. X /\ B e. X ) -> ( A R B <-> -. ( A .< B \/ B .< A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoer.1 | |- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
|
| 2 | opelxpi | |- ( ( A e. X /\ B e. X ) -> <. A , B >. e. ( X X. X ) ) |
|
| 3 | df-br | |- ( A ( X X. X ) B <-> <. A , B >. e. ( X X. X ) ) |
|
| 4 | 2 3 | sylibr | |- ( ( A e. X /\ B e. X ) -> A ( X X. X ) B ) |
| 5 | 1 | breqi | |- ( A R B <-> A ( ( X X. X ) \ ( .< u. `' .< ) ) B ) |
| 6 | brdif | |- ( A ( ( X X. X ) \ ( .< u. `' .< ) ) B <-> ( A ( X X. X ) B /\ -. A ( .< u. `' .< ) B ) ) |
|
| 7 | 5 6 | bitri | |- ( A R B <-> ( A ( X X. X ) B /\ -. A ( .< u. `' .< ) B ) ) |
| 8 | 7 | baib | |- ( A ( X X. X ) B -> ( A R B <-> -. A ( .< u. `' .< ) B ) ) |
| 9 | 4 8 | syl | |- ( ( A e. X /\ B e. X ) -> ( A R B <-> -. A ( .< u. `' .< ) B ) ) |
| 10 | brun | |- ( A ( .< u. `' .< ) B <-> ( A .< B \/ A `' .< B ) ) |
|
| 11 | brcnvg | |- ( ( A e. X /\ B e. X ) -> ( A `' .< B <-> B .< A ) ) |
|
| 12 | 11 | orbi2d | |- ( ( A e. X /\ B e. X ) -> ( ( A .< B \/ A `' .< B ) <-> ( A .< B \/ B .< A ) ) ) |
| 13 | 10 12 | bitrid | |- ( ( A e. X /\ B e. X ) -> ( A ( .< u. `' .< ) B <-> ( A .< B \/ B .< A ) ) ) |
| 14 | 13 | notbid | |- ( ( A e. X /\ B e. X ) -> ( -. A ( .< u. `' .< ) B <-> -. ( A .< B \/ B .< A ) ) ) |
| 15 | 9 14 | bitrd | |- ( ( A e. X /\ B e. X ) -> ( A R B <-> -. ( A .< B \/ B .< A ) ) ) |