This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for eqer . (Contributed by NM, 17-Mar-2008) (Proof shortened by Mario Carneiro, 6-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqer.1 | |- ( x = y -> A = B ) |
|
| eqer.2 | |- R = { <. x , y >. | A = B } |
||
| Assertion | eqerlem | |- ( z R w <-> [_ z / x ]_ A = [_ w / x ]_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqer.1 | |- ( x = y -> A = B ) |
|
| 2 | eqer.2 | |- R = { <. x , y >. | A = B } |
|
| 3 | 2 | brabsb | |- ( z R w <-> [. z / x ]. [. w / y ]. A = B ) |
| 4 | nfcsb1v | |- F/_ x [_ z / x ]_ A |
|
| 5 | nfcsb1v | |- F/_ x [_ w / x ]_ A |
|
| 6 | 4 5 | nfeq | |- F/ x [_ z / x ]_ A = [_ w / x ]_ A |
| 7 | nfv | |- F/ y A = [_ w / x ]_ A |
|
| 8 | vex | |- y e. _V |
|
| 9 | 8 1 | csbie | |- [_ y / x ]_ A = B |
| 10 | csbeq1 | |- ( y = w -> [_ y / x ]_ A = [_ w / x ]_ A ) |
|
| 11 | 9 10 | eqtr3id | |- ( y = w -> B = [_ w / x ]_ A ) |
| 12 | 11 | eqeq2d | |- ( y = w -> ( A = B <-> A = [_ w / x ]_ A ) ) |
| 13 | 7 12 | sbciegf | |- ( w e. _V -> ( [. w / y ]. A = B <-> A = [_ w / x ]_ A ) ) |
| 14 | 13 | elv | |- ( [. w / y ]. A = B <-> A = [_ w / x ]_ A ) |
| 15 | csbeq1a | |- ( x = z -> A = [_ z / x ]_ A ) |
|
| 16 | 15 | eqeq1d | |- ( x = z -> ( A = [_ w / x ]_ A <-> [_ z / x ]_ A = [_ w / x ]_ A ) ) |
| 17 | 14 16 | bitrid | |- ( x = z -> ( [. w / y ]. A = B <-> [_ z / x ]_ A = [_ w / x ]_ A ) ) |
| 18 | 6 17 | sbciegf | |- ( z e. _V -> ( [. z / x ]. [. w / y ]. A = B <-> [_ z / x ]_ A = [_ w / x ]_ A ) ) |
| 19 | 18 | elv | |- ( [. z / x ]. [. w / y ]. A = B <-> [_ z / x ]_ A = [_ w / x ]_ A ) |
| 20 | 3 19 | bitri | |- ( z R w <-> [_ z / x ]_ A = [_ w / x ]_ A ) |