This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | swopolem.1 | |- ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( x R y -> ( x R z \/ z R y ) ) ) |
|
| Assertion | swopolem | |- ( ( ph /\ ( X e. A /\ Y e. A /\ Z e. A ) ) -> ( X R Y -> ( X R Z \/ Z R Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swopolem.1 | |- ( ( ph /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( x R y -> ( x R z \/ z R y ) ) ) |
|
| 2 | 1 | ralrimivvva | |- ( ph -> A. x e. A A. y e. A A. z e. A ( x R y -> ( x R z \/ z R y ) ) ) |
| 3 | breq1 | |- ( x = X -> ( x R y <-> X R y ) ) |
|
| 4 | breq1 | |- ( x = X -> ( x R z <-> X R z ) ) |
|
| 5 | 4 | orbi1d | |- ( x = X -> ( ( x R z \/ z R y ) <-> ( X R z \/ z R y ) ) ) |
| 6 | 3 5 | imbi12d | |- ( x = X -> ( ( x R y -> ( x R z \/ z R y ) ) <-> ( X R y -> ( X R z \/ z R y ) ) ) ) |
| 7 | breq2 | |- ( y = Y -> ( X R y <-> X R Y ) ) |
|
| 8 | breq2 | |- ( y = Y -> ( z R y <-> z R Y ) ) |
|
| 9 | 8 | orbi2d | |- ( y = Y -> ( ( X R z \/ z R y ) <-> ( X R z \/ z R Y ) ) ) |
| 10 | 7 9 | imbi12d | |- ( y = Y -> ( ( X R y -> ( X R z \/ z R y ) ) <-> ( X R Y -> ( X R z \/ z R Y ) ) ) ) |
| 11 | breq2 | |- ( z = Z -> ( X R z <-> X R Z ) ) |
|
| 12 | breq1 | |- ( z = Z -> ( z R Y <-> Z R Y ) ) |
|
| 13 | 11 12 | orbi12d | |- ( z = Z -> ( ( X R z \/ z R Y ) <-> ( X R Z \/ Z R Y ) ) ) |
| 14 | 13 | imbi2d | |- ( z = Z -> ( ( X R Y -> ( X R z \/ z R Y ) ) <-> ( X R Y -> ( X R Z \/ Z R Y ) ) ) ) |
| 15 | 6 10 14 | rspc3v | |- ( ( X e. A /\ Y e. A /\ Z e. A ) -> ( A. x e. A A. y e. A A. z e. A ( x R y -> ( x R z \/ z R y ) ) -> ( X R Y -> ( X R Z \/ Z R Y ) ) ) ) |
| 16 | 2 15 | mpan9 | |- ( ( ph /\ ( X e. A /\ Y e. A /\ Z e. A ) ) -> ( X R Y -> ( X R Z \/ Z R Y ) ) ) |