This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | swoer.1 | |- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
|
| swoer.2 | |- ( ( ph /\ ( y e. X /\ z e. X ) ) -> ( y .< z -> -. z .< y ) ) |
||
| swoer.3 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x .< y -> ( x .< z \/ z .< y ) ) ) |
||
| swoord.4 | |- ( ph -> B e. X ) |
||
| swoord.5 | |- ( ph -> C e. X ) |
||
| swoord.6 | |- ( ph -> A R B ) |
||
| Assertion | swoord1 | |- ( ph -> ( A .< C <-> B .< C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swoer.1 | |- R = ( ( X X. X ) \ ( .< u. `' .< ) ) |
|
| 2 | swoer.2 | |- ( ( ph /\ ( y e. X /\ z e. X ) ) -> ( y .< z -> -. z .< y ) ) |
|
| 3 | swoer.3 | |- ( ( ph /\ ( x e. X /\ y e. X /\ z e. X ) ) -> ( x .< y -> ( x .< z \/ z .< y ) ) ) |
|
| 4 | swoord.4 | |- ( ph -> B e. X ) |
|
| 5 | swoord.5 | |- ( ph -> C e. X ) |
|
| 6 | swoord.6 | |- ( ph -> A R B ) |
|
| 7 | id | |- ( ph -> ph ) |
|
| 8 | difss | |- ( ( X X. X ) \ ( .< u. `' .< ) ) C_ ( X X. X ) |
|
| 9 | 1 8 | eqsstri | |- R C_ ( X X. X ) |
| 10 | 9 | ssbri | |- ( A R B -> A ( X X. X ) B ) |
| 11 | df-br | |- ( A ( X X. X ) B <-> <. A , B >. e. ( X X. X ) ) |
|
| 12 | opelxp1 | |- ( <. A , B >. e. ( X X. X ) -> A e. X ) |
|
| 13 | 11 12 | sylbi | |- ( A ( X X. X ) B -> A e. X ) |
| 14 | 6 10 13 | 3syl | |- ( ph -> A e. X ) |
| 15 | 3 | swopolem | |- ( ( ph /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( A .< C -> ( A .< B \/ B .< C ) ) ) |
| 16 | 7 14 5 4 15 | syl13anc | |- ( ph -> ( A .< C -> ( A .< B \/ B .< C ) ) ) |
| 17 | 1 | brdifun | |- ( ( A e. X /\ B e. X ) -> ( A R B <-> -. ( A .< B \/ B .< A ) ) ) |
| 18 | 14 4 17 | syl2anc | |- ( ph -> ( A R B <-> -. ( A .< B \/ B .< A ) ) ) |
| 19 | 6 18 | mpbid | |- ( ph -> -. ( A .< B \/ B .< A ) ) |
| 20 | orc | |- ( A .< B -> ( A .< B \/ B .< A ) ) |
|
| 21 | 19 20 | nsyl | |- ( ph -> -. A .< B ) |
| 22 | biorf | |- ( -. A .< B -> ( B .< C <-> ( A .< B \/ B .< C ) ) ) |
|
| 23 | 21 22 | syl | |- ( ph -> ( B .< C <-> ( A .< B \/ B .< C ) ) ) |
| 24 | 16 23 | sylibrd | |- ( ph -> ( A .< C -> B .< C ) ) |
| 25 | 3 | swopolem | |- ( ( ph /\ ( B e. X /\ C e. X /\ A e. X ) ) -> ( B .< C -> ( B .< A \/ A .< C ) ) ) |
| 26 | 7 4 5 14 25 | syl13anc | |- ( ph -> ( B .< C -> ( B .< A \/ A .< C ) ) ) |
| 27 | olc | |- ( B .< A -> ( A .< B \/ B .< A ) ) |
|
| 28 | 19 27 | nsyl | |- ( ph -> -. B .< A ) |
| 29 | biorf | |- ( -. B .< A -> ( A .< C <-> ( B .< A \/ A .< C ) ) ) |
|
| 30 | 28 29 | syl | |- ( ph -> ( A .< C <-> ( B .< A \/ A .< C ) ) ) |
| 31 | 26 30 | sylibrd | |- ( ph -> ( B .< C -> A .< C ) ) |
| 32 | 24 31 | impbid | |- ( ph -> ( A .< C <-> B .< C ) ) |