This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula building theorem for support restrictions: vector operation with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppssof1.s | |- ( ph -> ( A supp Y ) C_ L ) |
|
| suppssof1.o | |- ( ( ph /\ v e. R ) -> ( Y O v ) = Z ) |
||
| suppssof1.a | |- ( ph -> A : D --> V ) |
||
| suppssof1.b | |- ( ph -> B : D --> R ) |
||
| suppssof1.d | |- ( ph -> D e. W ) |
||
| suppssof1.y | |- ( ph -> Y e. U ) |
||
| Assertion | suppssof1 | |- ( ph -> ( ( A oF O B ) supp Z ) C_ L ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssof1.s | |- ( ph -> ( A supp Y ) C_ L ) |
|
| 2 | suppssof1.o | |- ( ( ph /\ v e. R ) -> ( Y O v ) = Z ) |
|
| 3 | suppssof1.a | |- ( ph -> A : D --> V ) |
|
| 4 | suppssof1.b | |- ( ph -> B : D --> R ) |
|
| 5 | suppssof1.d | |- ( ph -> D e. W ) |
|
| 6 | suppssof1.y | |- ( ph -> Y e. U ) |
|
| 7 | 3 | ffnd | |- ( ph -> A Fn D ) |
| 8 | 4 | ffnd | |- ( ph -> B Fn D ) |
| 9 | inidm | |- ( D i^i D ) = D |
|
| 10 | eqidd | |- ( ( ph /\ x e. D ) -> ( A ` x ) = ( A ` x ) ) |
|
| 11 | eqidd | |- ( ( ph /\ x e. D ) -> ( B ` x ) = ( B ` x ) ) |
|
| 12 | 7 8 5 5 9 10 11 | offval | |- ( ph -> ( A oF O B ) = ( x e. D |-> ( ( A ` x ) O ( B ` x ) ) ) ) |
| 13 | 12 | oveq1d | |- ( ph -> ( ( A oF O B ) supp Z ) = ( ( x e. D |-> ( ( A ` x ) O ( B ` x ) ) ) supp Z ) ) |
| 14 | 3 | feqmptd | |- ( ph -> A = ( x e. D |-> ( A ` x ) ) ) |
| 15 | 14 | oveq1d | |- ( ph -> ( A supp Y ) = ( ( x e. D |-> ( A ` x ) ) supp Y ) ) |
| 16 | 15 1 | eqsstrrd | |- ( ph -> ( ( x e. D |-> ( A ` x ) ) supp Y ) C_ L ) |
| 17 | fvexd | |- ( ( ph /\ x e. D ) -> ( A ` x ) e. _V ) |
|
| 18 | 4 | ffvelcdmda | |- ( ( ph /\ x e. D ) -> ( B ` x ) e. R ) |
| 19 | 16 2 17 18 6 | suppssov1 | |- ( ph -> ( ( x e. D |-> ( ( A ` x ) O ( B ` x ) ) ) supp Z ) C_ L ) |
| 20 | 13 19 | eqsstrd | |- ( ph -> ( ( A oF O B ) supp Z ) C_ L ) |