This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a function which has the same zero values (in its domain) as another function is a subset of the support of this other function. (Contributed by AV, 30-Apr-2019) (Proof shortened by AV, 6-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppfnss | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) -> ( F supp Z ) C_ ( G supp Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> A C_ B ) |
|
| 2 | fndm | |- ( F Fn A -> dom F = A ) |
|
| 3 | 2 | ad2antrr | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> dom F = A ) |
| 4 | fndm | |- ( G Fn B -> dom G = B ) |
|
| 5 | 4 | ad2antlr | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> dom G = B ) |
| 6 | 1 3 5 | 3sstr4d | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> dom F C_ dom G ) |
| 7 | 6 | adantr | |- ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) -> dom F C_ dom G ) |
| 8 | 2 | eleq2d | |- ( F Fn A -> ( y e. dom F <-> y e. A ) ) |
| 9 | 8 | ad2antrr | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( y e. dom F <-> y e. A ) ) |
| 10 | fveqeq2 | |- ( x = y -> ( ( G ` x ) = Z <-> ( G ` y ) = Z ) ) |
|
| 11 | fveqeq2 | |- ( x = y -> ( ( F ` x ) = Z <-> ( F ` y ) = Z ) ) |
|
| 12 | 10 11 | imbi12d | |- ( x = y -> ( ( ( G ` x ) = Z -> ( F ` x ) = Z ) <-> ( ( G ` y ) = Z -> ( F ` y ) = Z ) ) ) |
| 13 | 12 | rspcv | |- ( y e. A -> ( A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) -> ( ( G ` y ) = Z -> ( F ` y ) = Z ) ) ) |
| 14 | 9 13 | biimtrdi | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( y e. dom F -> ( A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) -> ( ( G ` y ) = Z -> ( F ` y ) = Z ) ) ) ) |
| 15 | 14 | com23 | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) -> ( y e. dom F -> ( ( G ` y ) = Z -> ( F ` y ) = Z ) ) ) ) |
| 16 | 15 | imp31 | |- ( ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) /\ y e. dom F ) -> ( ( G ` y ) = Z -> ( F ` y ) = Z ) ) |
| 17 | 16 | necon3d | |- ( ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) /\ y e. dom F ) -> ( ( F ` y ) =/= Z -> ( G ` y ) =/= Z ) ) |
| 18 | 17 | ex | |- ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) -> ( y e. dom F -> ( ( F ` y ) =/= Z -> ( G ` y ) =/= Z ) ) ) |
| 19 | 18 | com23 | |- ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) -> ( ( F ` y ) =/= Z -> ( y e. dom F -> ( G ` y ) =/= Z ) ) ) |
| 20 | 19 | 3imp | |- ( ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) /\ ( F ` y ) =/= Z /\ y e. dom F ) -> ( G ` y ) =/= Z ) |
| 21 | 7 20 | rabssrabd | |- ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) -> { y e. dom F | ( F ` y ) =/= Z } C_ { y e. dom G | ( G ` y ) =/= Z } ) |
| 22 | fnfun | |- ( F Fn A -> Fun F ) |
|
| 23 | 22 | ad2antrr | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> Fun F ) |
| 24 | simpl | |- ( ( F Fn A /\ G Fn B ) -> F Fn A ) |
|
| 25 | ssexg | |- ( ( A C_ B /\ B e. V ) -> A e. _V ) |
|
| 26 | 25 | 3adant3 | |- ( ( A C_ B /\ B e. V /\ Z e. W ) -> A e. _V ) |
| 27 | fnex | |- ( ( F Fn A /\ A e. _V ) -> F e. _V ) |
|
| 28 | 24 26 27 | syl2an | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> F e. _V ) |
| 29 | simpr3 | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> Z e. W ) |
|
| 30 | suppval1 | |- ( ( Fun F /\ F e. _V /\ Z e. W ) -> ( F supp Z ) = { y e. dom F | ( F ` y ) =/= Z } ) |
|
| 31 | 23 28 29 30 | syl3anc | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( F supp Z ) = { y e. dom F | ( F ` y ) =/= Z } ) |
| 32 | fnfun | |- ( G Fn B -> Fun G ) |
|
| 33 | 32 | ad2antlr | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> Fun G ) |
| 34 | simpr | |- ( ( F Fn A /\ G Fn B ) -> G Fn B ) |
|
| 35 | simp2 | |- ( ( A C_ B /\ B e. V /\ Z e. W ) -> B e. V ) |
|
| 36 | fnex | |- ( ( G Fn B /\ B e. V ) -> G e. _V ) |
|
| 37 | 34 35 36 | syl2an | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> G e. _V ) |
| 38 | suppval1 | |- ( ( Fun G /\ G e. _V /\ Z e. W ) -> ( G supp Z ) = { y e. dom G | ( G ` y ) =/= Z } ) |
|
| 39 | 33 37 29 38 | syl3anc | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( G supp Z ) = { y e. dom G | ( G ` y ) =/= Z } ) |
| 40 | 31 39 | sseq12d | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( ( F supp Z ) C_ ( G supp Z ) <-> { y e. dom F | ( F ` y ) =/= Z } C_ { y e. dom G | ( G ` y ) =/= Z } ) ) |
| 41 | 40 | adantr | |- ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) -> ( ( F supp Z ) C_ ( G supp Z ) <-> { y e. dom F | ( F ` y ) =/= Z } C_ { y e. dom G | ( G ` y ) =/= Z } ) ) |
| 42 | 21 41 | mpbird | |- ( ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) /\ A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) -> ( F supp Z ) C_ ( G supp Z ) ) |
| 43 | 42 | ex | |- ( ( ( F Fn A /\ G Fn B ) /\ ( A C_ B /\ B e. V /\ Z e. W ) ) -> ( A. x e. A ( ( G ` x ) = Z -> ( F ` x ) = Z ) -> ( F supp Z ) C_ ( G supp Z ) ) ) |