This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass of a restricted class abstraction. (Contributed by AV, 4-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rabssrabd.1 | |- ( ph -> A C_ B ) |
|
| rabssrabd.2 | |- ( ( ph /\ ps /\ x e. A ) -> ch ) |
||
| Assertion | rabssrabd | |- ( ph -> { x e. A | ps } C_ { x e. B | ch } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabssrabd.1 | |- ( ph -> A C_ B ) |
|
| 2 | rabssrabd.2 | |- ( ( ph /\ ps /\ x e. A ) -> ch ) |
|
| 3 | 3anan32 | |- ( ( ph /\ ps /\ x e. A ) <-> ( ( ph /\ x e. A ) /\ ps ) ) |
|
| 4 | 3 2 | sylbir | |- ( ( ( ph /\ x e. A ) /\ ps ) -> ch ) |
| 5 | 4 | ex | |- ( ( ph /\ x e. A ) -> ( ps -> ch ) ) |
| 6 | 5 | ss2rabdv | |- ( ph -> { x e. A | ps } C_ { x e. A | ch } ) |
| 7 | rabss2 | |- ( A C_ B -> { x e. A | ch } C_ { x e. B | ch } ) |
|
| 8 | 1 7 | syl | |- ( ph -> { x e. A | ch } C_ { x e. B | ch } ) |
| 9 | 6 8 | sstrd | |- ( ph -> { x e. A | ps } C_ { x e. B | ch } ) |