This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a function which is a subset of another function is a subset of the support of this other function. (Contributed by AV, 27-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funsssuppss | |- ( ( Fun G /\ F C_ G /\ G e. V ) -> ( F supp Z ) C_ ( G supp Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funss | |- ( F C_ G -> ( Fun G -> Fun F ) ) |
|
| 2 | 1 | impcom | |- ( ( Fun G /\ F C_ G ) -> Fun F ) |
| 3 | 2 | funfnd | |- ( ( Fun G /\ F C_ G ) -> F Fn dom F ) |
| 4 | funfn | |- ( Fun G <-> G Fn dom G ) |
|
| 5 | 4 | biimpi | |- ( Fun G -> G Fn dom G ) |
| 6 | 5 | adantr | |- ( ( Fun G /\ F C_ G ) -> G Fn dom G ) |
| 7 | 3 6 | jca | |- ( ( Fun G /\ F C_ G ) -> ( F Fn dom F /\ G Fn dom G ) ) |
| 8 | 7 | 3adant3 | |- ( ( Fun G /\ F C_ G /\ G e. V ) -> ( F Fn dom F /\ G Fn dom G ) ) |
| 9 | 8 | adantr | |- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> ( F Fn dom F /\ G Fn dom G ) ) |
| 10 | dmss | |- ( F C_ G -> dom F C_ dom G ) |
|
| 11 | 10 | 3ad2ant2 | |- ( ( Fun G /\ F C_ G /\ G e. V ) -> dom F C_ dom G ) |
| 12 | 11 | adantr | |- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> dom F C_ dom G ) |
| 13 | dmexg | |- ( G e. V -> dom G e. _V ) |
|
| 14 | 13 | 3ad2ant3 | |- ( ( Fun G /\ F C_ G /\ G e. V ) -> dom G e. _V ) |
| 15 | 14 | adantr | |- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> dom G e. _V ) |
| 16 | simpr | |- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> Z e. _V ) |
|
| 17 | 12 15 16 | 3jca | |- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> ( dom F C_ dom G /\ dom G e. _V /\ Z e. _V ) ) |
| 18 | 9 17 | jca | |- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> ( ( F Fn dom F /\ G Fn dom G ) /\ ( dom F C_ dom G /\ dom G e. _V /\ Z e. _V ) ) ) |
| 19 | funssfv | |- ( ( Fun G /\ F C_ G /\ x e. dom F ) -> ( G ` x ) = ( F ` x ) ) |
|
| 20 | 19 | 3expa | |- ( ( ( Fun G /\ F C_ G ) /\ x e. dom F ) -> ( G ` x ) = ( F ` x ) ) |
| 21 | eqeq1 | |- ( ( G ` x ) = ( F ` x ) -> ( ( G ` x ) = Z <-> ( F ` x ) = Z ) ) |
|
| 22 | 21 | biimpd | |- ( ( G ` x ) = ( F ` x ) -> ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) |
| 23 | 20 22 | syl | |- ( ( ( Fun G /\ F C_ G ) /\ x e. dom F ) -> ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) |
| 24 | 23 | ralrimiva | |- ( ( Fun G /\ F C_ G ) -> A. x e. dom F ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) |
| 25 | 24 | 3adant3 | |- ( ( Fun G /\ F C_ G /\ G e. V ) -> A. x e. dom F ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) |
| 26 | 25 | adantr | |- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> A. x e. dom F ( ( G ` x ) = Z -> ( F ` x ) = Z ) ) |
| 27 | suppfnss | |- ( ( ( F Fn dom F /\ G Fn dom G ) /\ ( dom F C_ dom G /\ dom G e. _V /\ Z e. _V ) ) -> ( A. x e. dom F ( ( G ` x ) = Z -> ( F ` x ) = Z ) -> ( F supp Z ) C_ ( G supp Z ) ) ) |
|
| 28 | 18 26 27 | sylc | |- ( ( ( Fun G /\ F C_ G /\ G e. V ) /\ Z e. _V ) -> ( F supp Z ) C_ ( G supp Z ) ) |
| 29 | 28 | expcom | |- ( Z e. _V -> ( ( Fun G /\ F C_ G /\ G e. V ) -> ( F supp Z ) C_ ( G supp Z ) ) ) |
| 30 | ssid | |- (/) C_ (/) |
|
| 31 | simpr | |- ( ( F e. _V /\ Z e. _V ) -> Z e. _V ) |
|
| 32 | supp0prc | |- ( -. ( F e. _V /\ Z e. _V ) -> ( F supp Z ) = (/) ) |
|
| 33 | 31 32 | nsyl5 | |- ( -. Z e. _V -> ( F supp Z ) = (/) ) |
| 34 | simpr | |- ( ( G e. _V /\ Z e. _V ) -> Z e. _V ) |
|
| 35 | supp0prc | |- ( -. ( G e. _V /\ Z e. _V ) -> ( G supp Z ) = (/) ) |
|
| 36 | 34 35 | nsyl5 | |- ( -. Z e. _V -> ( G supp Z ) = (/) ) |
| 37 | 33 36 | sseq12d | |- ( -. Z e. _V -> ( ( F supp Z ) C_ ( G supp Z ) <-> (/) C_ (/) ) ) |
| 38 | 30 37 | mpbiri | |- ( -. Z e. _V -> ( F supp Z ) C_ ( G supp Z ) ) |
| 39 | 38 | a1d | |- ( -. Z e. _V -> ( ( Fun G /\ F C_ G /\ G e. V ) -> ( F supp Z ) C_ ( G supp Z ) ) ) |
| 40 | 29 39 | pm2.61i | |- ( ( Fun G /\ F C_ G /\ G e. V ) -> ( F supp Z ) C_ ( G supp Z ) ) |