This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a function which has the same zero values (in its domain) as another function is a subset of the support of this other function. (Contributed by AV, 30-Apr-2019) (Proof shortened by AV, 6-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suppfnss | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → 𝐴 ⊆ 𝐵 ) | |
| 2 | fndm | ⊢ ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 ) | |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → dom 𝐹 = 𝐴 ) |
| 4 | fndm | ⊢ ( 𝐺 Fn 𝐵 → dom 𝐺 = 𝐵 ) | |
| 5 | 4 | ad2antlr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → dom 𝐺 = 𝐵 ) |
| 6 | 1 3 5 | 3sstr4d | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → dom 𝐹 ⊆ dom 𝐺 ) |
| 7 | 6 | adantr | ⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → dom 𝐹 ⊆ dom 𝐺 ) |
| 8 | 2 | eleq2d | ⊢ ( 𝐹 Fn 𝐴 → ( 𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴 ) ) |
| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( 𝑦 ∈ dom 𝐹 ↔ 𝑦 ∈ 𝐴 ) ) |
| 10 | fveqeq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐺 ‘ 𝑥 ) = 𝑍 ↔ ( 𝐺 ‘ 𝑦 ) = 𝑍 ) ) | |
| 11 | fveqeq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) = 𝑍 ↔ ( 𝐹 ‘ 𝑦 ) = 𝑍 ) ) | |
| 12 | 10 11 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ↔ ( ( 𝐺 ‘ 𝑦 ) = 𝑍 → ( 𝐹 ‘ 𝑦 ) = 𝑍 ) ) ) |
| 13 | 12 | rspcv | ⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ( ( 𝐺 ‘ 𝑦 ) = 𝑍 → ( 𝐹 ‘ 𝑦 ) = 𝑍 ) ) ) |
| 14 | 9 13 | biimtrdi | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( 𝑦 ∈ dom 𝐹 → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ( ( 𝐺 ‘ 𝑦 ) = 𝑍 → ( 𝐹 ‘ 𝑦 ) = 𝑍 ) ) ) ) |
| 15 | 14 | com23 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ( 𝑦 ∈ dom 𝐹 → ( ( 𝐺 ‘ 𝑦 ) = 𝑍 → ( 𝐹 ‘ 𝑦 ) = 𝑍 ) ) ) ) |
| 16 | 15 | imp31 | ⊢ ( ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐺 ‘ 𝑦 ) = 𝑍 → ( 𝐹 ‘ 𝑦 ) = 𝑍 ) ) |
| 17 | 16 | necon3d | ⊢ ( ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) ∧ 𝑦 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 → ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 ) ) |
| 18 | 17 | ex | ⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → ( 𝑦 ∈ dom 𝐹 → ( ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 → ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 ) ) ) |
| 19 | 18 | com23 | ⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → ( ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 → ( 𝑦 ∈ dom 𝐹 → ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 ) ) ) |
| 20 | 19 | 3imp | ⊢ ( ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) ∧ ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 ∧ 𝑦 ∈ dom 𝐹 ) → ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 ) |
| 21 | 7 20 | rabssrabd | ⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 } ⊆ { 𝑦 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 } ) |
| 22 | fnfun | ⊢ ( 𝐹 Fn 𝐴 → Fun 𝐹 ) | |
| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → Fun 𝐹 ) |
| 24 | simpl | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → 𝐹 Fn 𝐴 ) | |
| 25 | ssexg | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) | |
| 26 | 25 | 3adant3 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → 𝐴 ∈ V ) |
| 27 | fnex | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ V ) → 𝐹 ∈ V ) | |
| 28 | 24 26 27 | syl2an | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → 𝐹 ∈ V ) |
| 29 | simpr3 | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → 𝑍 ∈ 𝑊 ) | |
| 30 | suppval1 | ⊢ ( ( Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( 𝐹 supp 𝑍 ) = { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 } ) | |
| 31 | 23 28 29 30 | syl3anc | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( 𝐹 supp 𝑍 ) = { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 } ) |
| 32 | fnfun | ⊢ ( 𝐺 Fn 𝐵 → Fun 𝐺 ) | |
| 33 | 32 | ad2antlr | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → Fun 𝐺 ) |
| 34 | simpr | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) → 𝐺 Fn 𝐵 ) | |
| 35 | simp2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → 𝐵 ∈ 𝑉 ) | |
| 36 | fnex | ⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐺 ∈ V ) | |
| 37 | 34 35 36 | syl2an | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → 𝐺 ∈ V ) |
| 38 | suppval1 | ⊢ ( ( Fun 𝐺 ∧ 𝐺 ∈ V ∧ 𝑍 ∈ 𝑊 ) → ( 𝐺 supp 𝑍 ) = { 𝑦 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 } ) | |
| 39 | 33 37 29 38 | syl3anc | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( 𝐺 supp 𝑍 ) = { 𝑦 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 } ) |
| 40 | 31 39 | sseq12d | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ↔ { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 } ⊆ { 𝑦 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 } ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → ( ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ↔ { 𝑦 ∈ dom 𝐹 ∣ ( 𝐹 ‘ 𝑦 ) ≠ 𝑍 } ⊆ { 𝑦 ∈ dom 𝐺 ∣ ( 𝐺 ‘ 𝑦 ) ≠ 𝑍 } ) ) |
| 42 | 21 41 | mpbird | ⊢ ( ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) |
| 43 | 42 | ex | ⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ) ∧ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) → ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐺 ‘ 𝑥 ) = 𝑍 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) → ( 𝐹 supp 𝑍 ) ⊆ ( 𝐺 supp 𝑍 ) ) ) |