This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supicc.1 | |- ( ph -> B e. RR ) |
|
| supicc.2 | |- ( ph -> C e. RR ) |
||
| supicc.3 | |- ( ph -> A C_ ( B [,] C ) ) |
||
| supicc.4 | |- ( ph -> A =/= (/) ) |
||
| Assertion | supicc | |- ( ph -> sup ( A , RR , < ) e. ( B [,] C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supicc.1 | |- ( ph -> B e. RR ) |
|
| 2 | supicc.2 | |- ( ph -> C e. RR ) |
|
| 3 | supicc.3 | |- ( ph -> A C_ ( B [,] C ) ) |
|
| 4 | supicc.4 | |- ( ph -> A =/= (/) ) |
|
| 5 | iccssre | |- ( ( B e. RR /\ C e. RR ) -> ( B [,] C ) C_ RR ) |
|
| 6 | 1 2 5 | syl2anc | |- ( ph -> ( B [,] C ) C_ RR ) |
| 7 | 3 6 | sstrd | |- ( ph -> A C_ RR ) |
| 8 | 1 | adantr | |- ( ( ph /\ x e. A ) -> B e. RR ) |
| 9 | 8 | rexrd | |- ( ( ph /\ x e. A ) -> B e. RR* ) |
| 10 | 2 | adantr | |- ( ( ph /\ x e. A ) -> C e. RR ) |
| 11 | 10 | rexrd | |- ( ( ph /\ x e. A ) -> C e. RR* ) |
| 12 | 3 | sselda | |- ( ( ph /\ x e. A ) -> x e. ( B [,] C ) ) |
| 13 | iccleub | |- ( ( B e. RR* /\ C e. RR* /\ x e. ( B [,] C ) ) -> x <_ C ) |
|
| 14 | 9 11 12 13 | syl3anc | |- ( ( ph /\ x e. A ) -> x <_ C ) |
| 15 | 14 | ralrimiva | |- ( ph -> A. x e. A x <_ C ) |
| 16 | brralrspcev | |- ( ( C e. RR /\ A. x e. A x <_ C ) -> E. y e. RR A. x e. A x <_ y ) |
|
| 17 | 2 15 16 | syl2anc | |- ( ph -> E. y e. RR A. x e. A x <_ y ) |
| 18 | suprcl | |- ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) -> sup ( A , RR , < ) e. RR ) |
|
| 19 | 7 4 17 18 | syl3anc | |- ( ph -> sup ( A , RR , < ) e. RR ) |
| 20 | 7 | sselda | |- ( ( ph /\ x e. A ) -> x e. RR ) |
| 21 | 3 | adantr | |- ( ( ph /\ x e. A ) -> A C_ ( B [,] C ) ) |
| 22 | simpr | |- ( ( ph /\ x e. A ) -> x e. A ) |
|
| 23 | iccsupr | |- ( ( ( B e. RR /\ C e. RR ) /\ A C_ ( B [,] C ) /\ x e. A ) -> ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) ) |
|
| 24 | 8 10 21 22 23 | syl211anc | |- ( ( ph /\ x e. A ) -> ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) ) |
| 25 | 24 18 | syl | |- ( ( ph /\ x e. A ) -> sup ( A , RR , < ) e. RR ) |
| 26 | iccgelb | |- ( ( B e. RR* /\ C e. RR* /\ x e. ( B [,] C ) ) -> B <_ x ) |
|
| 27 | 9 11 12 26 | syl3anc | |- ( ( ph /\ x e. A ) -> B <_ x ) |
| 28 | suprub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) /\ x e. A ) -> x <_ sup ( A , RR , < ) ) |
|
| 29 | 24 22 28 | syl2anc | |- ( ( ph /\ x e. A ) -> x <_ sup ( A , RR , < ) ) |
| 30 | 8 20 25 27 29 | letrd | |- ( ( ph /\ x e. A ) -> B <_ sup ( A , RR , < ) ) |
| 31 | 30 | ralrimiva | |- ( ph -> A. x e. A B <_ sup ( A , RR , < ) ) |
| 32 | r19.3rzv | |- ( A =/= (/) -> ( B <_ sup ( A , RR , < ) <-> A. x e. A B <_ sup ( A , RR , < ) ) ) |
|
| 33 | 4 32 | syl | |- ( ph -> ( B <_ sup ( A , RR , < ) <-> A. x e. A B <_ sup ( A , RR , < ) ) ) |
| 34 | 31 33 | mpbird | |- ( ph -> B <_ sup ( A , RR , < ) ) |
| 35 | suprleub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. y e. RR A. x e. A x <_ y ) /\ C e. RR ) -> ( sup ( A , RR , < ) <_ C <-> A. x e. A x <_ C ) ) |
|
| 36 | 7 4 17 2 35 | syl31anc | |- ( ph -> ( sup ( A , RR , < ) <_ C <-> A. x e. A x <_ C ) ) |
| 37 | 15 36 | mpbird | |- ( ph -> sup ( A , RR , < ) <_ C ) |
| 38 | elicc2 | |- ( ( B e. RR /\ C e. RR ) -> ( sup ( A , RR , < ) e. ( B [,] C ) <-> ( sup ( A , RR , < ) e. RR /\ B <_ sup ( A , RR , < ) /\ sup ( A , RR , < ) <_ C ) ) ) |
|
| 39 | 1 2 38 | syl2anc | |- ( ph -> ( sup ( A , RR , < ) e. ( B [,] C ) <-> ( sup ( A , RR , < ) e. RR /\ B <_ sup ( A , RR , < ) /\ sup ( A , RR , < ) <_ C ) ) ) |
| 40 | 19 34 37 39 | mpbir3and | |- ( ph -> sup ( A , RR , < ) e. ( B [,] C ) ) |