This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supicc.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| supicc.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| supicc.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ) | ||
| supicc.4 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | ||
| Assertion | supicc | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ( 𝐵 [,] 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supicc.1 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 2 | supicc.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 3 | supicc.3 | ⊢ ( 𝜑 → 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ) | |
| 4 | supicc.4 | ⊢ ( 𝜑 → 𝐴 ≠ ∅ ) | |
| 5 | iccssre | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) | |
| 6 | 1 2 5 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 [,] 𝐶 ) ⊆ ℝ ) |
| 7 | 3 6 | sstrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 8 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 9 | 8 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 11 | 10 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ* ) |
| 12 | 3 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) |
| 13 | iccleub | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝑥 ≤ 𝐶 ) | |
| 14 | 9 11 12 13 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ 𝐶 ) |
| 15 | 14 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐶 ) |
| 16 | brralrspcev | ⊢ ( ( 𝐶 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐶 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) | |
| 17 | 2 15 16 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 18 | suprcl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) | |
| 19 | 7 4 17 18 | syl3anc | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 20 | 7 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 21 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ) |
| 22 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 23 | iccsupr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ⊆ ( 𝐵 [,] 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) | |
| 24 | 8 10 21 22 23 | syl211anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 25 | 24 18 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 26 | iccgelb | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 [,] 𝐶 ) ) → 𝐵 ≤ 𝑥 ) | |
| 27 | 9 11 12 26 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ 𝑥 ) |
| 28 | suprub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ , < ) ) | |
| 29 | 24 22 28 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 30 | 8 20 25 27 29 | letrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 31 | 30 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 32 | r19.3rzv | ⊢ ( 𝐴 ≠ ∅ → ( 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) ) | |
| 33 | 4 32 | syl | ⊢ ( 𝜑 → ( 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) ) |
| 34 | 31 33 | mpbird | ⊢ ( 𝜑 → 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 35 | suprleub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝐶 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐶 ) ) | |
| 36 | 7 4 17 2 35 | syl31anc | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝐶 ) ) |
| 37 | 15 36 | mpbird | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ) |
| 38 | elicc2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ∈ ( 𝐵 [,] 𝐶 ) ↔ ( sup ( 𝐴 , ℝ , < ) ∈ ℝ ∧ 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ∧ sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ) ) ) | |
| 39 | 1 2 38 | syl2anc | ⊢ ( 𝜑 → ( sup ( 𝐴 , ℝ , < ) ∈ ( 𝐵 [,] 𝐶 ) ↔ ( sup ( 𝐴 , ℝ , < ) ∈ ℝ ∧ 𝐵 ≤ sup ( 𝐴 , ℝ , < ) ∧ sup ( 𝐴 , ℝ , < ) ≤ 𝐶 ) ) ) |
| 40 | 19 34 37 39 | mpbir3and | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ , < ) ∈ ( 𝐵 [,] 𝐶 ) ) |