This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum (see suprcl ). (Contributed by Paul Chapman, 21-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccsupr | |- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) /\ C e. S ) -> ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. y e. S y <_ x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 2 | sstr | |- ( ( S C_ ( A [,] B ) /\ ( A [,] B ) C_ RR ) -> S C_ RR ) |
|
| 3 | 2 | ancoms | |- ( ( ( A [,] B ) C_ RR /\ S C_ ( A [,] B ) ) -> S C_ RR ) |
| 4 | 1 3 | sylan | |- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> S C_ RR ) |
| 5 | 4 | 3adant3 | |- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) /\ C e. S ) -> S C_ RR ) |
| 6 | ne0i | |- ( C e. S -> S =/= (/) ) |
|
| 7 | 6 | 3ad2ant3 | |- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) /\ C e. S ) -> S =/= (/) ) |
| 8 | simplr | |- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> B e. RR ) |
|
| 9 | ssel | |- ( S C_ ( A [,] B ) -> ( y e. S -> y e. ( A [,] B ) ) ) |
|
| 10 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
|
| 11 | 10 | biimpd | |- ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) -> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
| 12 | 9 11 | sylan9r | |- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> ( y e. S -> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
| 13 | 12 | imp | |- ( ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) /\ y e. S ) -> ( y e. RR /\ A <_ y /\ y <_ B ) ) |
| 14 | 13 | simp3d | |- ( ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) /\ y e. S ) -> y <_ B ) |
| 15 | 14 | ralrimiva | |- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> A. y e. S y <_ B ) |
| 16 | brralrspcev | |- ( ( B e. RR /\ A. y e. S y <_ B ) -> E. x e. RR A. y e. S y <_ x ) |
|
| 17 | 8 15 16 | syl2anc | |- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) ) -> E. x e. RR A. y e. S y <_ x ) |
| 18 | 17 | 3adant3 | |- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) /\ C e. S ) -> E. x e. RR A. y e. S y <_ x ) |
| 19 | 5 7 18 | 3jca | |- ( ( ( A e. RR /\ B e. RR ) /\ S C_ ( A [,] B ) /\ C e. S ) -> ( S C_ RR /\ S =/= (/) /\ E. x e. RR A. y e. S y <_ x ) ) |