This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumpr.1 | |- ( k = A -> C = D ) |
|
| sumpr.2 | |- ( k = B -> C = E ) |
||
| sumpr.3 | |- ( ph -> ( D e. CC /\ E e. CC ) ) |
||
| sumpr.4 | |- ( ph -> ( A e. V /\ B e. W ) ) |
||
| sumpr.5 | |- ( ph -> A =/= B ) |
||
| Assertion | sumpr | |- ( ph -> sum_ k e. { A , B } C = ( D + E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumpr.1 | |- ( k = A -> C = D ) |
|
| 2 | sumpr.2 | |- ( k = B -> C = E ) |
|
| 3 | sumpr.3 | |- ( ph -> ( D e. CC /\ E e. CC ) ) |
|
| 4 | sumpr.4 | |- ( ph -> ( A e. V /\ B e. W ) ) |
|
| 5 | sumpr.5 | |- ( ph -> A =/= B ) |
|
| 6 | disjsn2 | |- ( A =/= B -> ( { A } i^i { B } ) = (/) ) |
|
| 7 | 5 6 | syl | |- ( ph -> ( { A } i^i { B } ) = (/) ) |
| 8 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 9 | 8 | a1i | |- ( ph -> { A , B } = ( { A } u. { B } ) ) |
| 10 | prfi | |- { A , B } e. Fin |
|
| 11 | 10 | a1i | |- ( ph -> { A , B } e. Fin ) |
| 12 | 1 | eleq1d | |- ( k = A -> ( C e. CC <-> D e. CC ) ) |
| 13 | 2 | eleq1d | |- ( k = B -> ( C e. CC <-> E e. CC ) ) |
| 14 | 12 13 | ralprg | |- ( ( A e. V /\ B e. W ) -> ( A. k e. { A , B } C e. CC <-> ( D e. CC /\ E e. CC ) ) ) |
| 15 | 4 14 | syl | |- ( ph -> ( A. k e. { A , B } C e. CC <-> ( D e. CC /\ E e. CC ) ) ) |
| 16 | 3 15 | mpbird | |- ( ph -> A. k e. { A , B } C e. CC ) |
| 17 | 16 | r19.21bi | |- ( ( ph /\ k e. { A , B } ) -> C e. CC ) |
| 18 | 7 9 11 17 | fsumsplit | |- ( ph -> sum_ k e. { A , B } C = ( sum_ k e. { A } C + sum_ k e. { B } C ) ) |
| 19 | 4 | simpld | |- ( ph -> A e. V ) |
| 20 | 3 | simpld | |- ( ph -> D e. CC ) |
| 21 | 1 | sumsn | |- ( ( A e. V /\ D e. CC ) -> sum_ k e. { A } C = D ) |
| 22 | 19 20 21 | syl2anc | |- ( ph -> sum_ k e. { A } C = D ) |
| 23 | 4 | simprd | |- ( ph -> B e. W ) |
| 24 | 3 | simprd | |- ( ph -> E e. CC ) |
| 25 | 2 | sumsn | |- ( ( B e. W /\ E e. CC ) -> sum_ k e. { B } C = E ) |
| 26 | 23 24 25 | syl2anc | |- ( ph -> sum_ k e. { B } C = E ) |
| 27 | 22 26 | oveq12d | |- ( ph -> ( sum_ k e. { A } C + sum_ k e. { B } C ) = ( D + E ) ) |
| 28 | 18 27 | eqtrd | |- ( ph -> sum_ k e. { A , B } C = ( D + E ) ) |