This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum over a triple is the sum of the elements. (Contributed by AV, 24-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumtp.e | |- ( k = A -> D = E ) |
|
| sumtp.f | |- ( k = B -> D = F ) |
||
| sumtp.g | |- ( k = C -> D = G ) |
||
| sumtp.c | |- ( ph -> ( E e. CC /\ F e. CC /\ G e. CC ) ) |
||
| sumtp.v | |- ( ph -> ( A e. V /\ B e. W /\ C e. X ) ) |
||
| sumtp.1 | |- ( ph -> A =/= B ) |
||
| sumtp.2 | |- ( ph -> A =/= C ) |
||
| sumtp.3 | |- ( ph -> B =/= C ) |
||
| Assertion | sumtp | |- ( ph -> sum_ k e. { A , B , C } D = ( ( E + F ) + G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumtp.e | |- ( k = A -> D = E ) |
|
| 2 | sumtp.f | |- ( k = B -> D = F ) |
|
| 3 | sumtp.g | |- ( k = C -> D = G ) |
|
| 4 | sumtp.c | |- ( ph -> ( E e. CC /\ F e. CC /\ G e. CC ) ) |
|
| 5 | sumtp.v | |- ( ph -> ( A e. V /\ B e. W /\ C e. X ) ) |
|
| 6 | sumtp.1 | |- ( ph -> A =/= B ) |
|
| 7 | sumtp.2 | |- ( ph -> A =/= C ) |
|
| 8 | sumtp.3 | |- ( ph -> B =/= C ) |
|
| 9 | 7 | necomd | |- ( ph -> C =/= A ) |
| 10 | 8 | necomd | |- ( ph -> C =/= B ) |
| 11 | 9 10 | nelprd | |- ( ph -> -. C e. { A , B } ) |
| 12 | disjsn | |- ( ( { A , B } i^i { C } ) = (/) <-> -. C e. { A , B } ) |
|
| 13 | 11 12 | sylibr | |- ( ph -> ( { A , B } i^i { C } ) = (/) ) |
| 14 | df-tp | |- { A , B , C } = ( { A , B } u. { C } ) |
|
| 15 | 14 | a1i | |- ( ph -> { A , B , C } = ( { A , B } u. { C } ) ) |
| 16 | tpfi | |- { A , B , C } e. Fin |
|
| 17 | 16 | a1i | |- ( ph -> { A , B , C } e. Fin ) |
| 18 | 1 | eleq1d | |- ( k = A -> ( D e. CC <-> E e. CC ) ) |
| 19 | 2 | eleq1d | |- ( k = B -> ( D e. CC <-> F e. CC ) ) |
| 20 | 3 | eleq1d | |- ( k = C -> ( D e. CC <-> G e. CC ) ) |
| 21 | 18 19 20 | raltpg | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A. k e. { A , B , C } D e. CC <-> ( E e. CC /\ F e. CC /\ G e. CC ) ) ) |
| 22 | 5 21 | syl | |- ( ph -> ( A. k e. { A , B , C } D e. CC <-> ( E e. CC /\ F e. CC /\ G e. CC ) ) ) |
| 23 | 4 22 | mpbird | |- ( ph -> A. k e. { A , B , C } D e. CC ) |
| 24 | 23 | r19.21bi | |- ( ( ph /\ k e. { A , B , C } ) -> D e. CC ) |
| 25 | 13 15 17 24 | fsumsplit | |- ( ph -> sum_ k e. { A , B , C } D = ( sum_ k e. { A , B } D + sum_ k e. { C } D ) ) |
| 26 | 3simpa | |- ( ( E e. CC /\ F e. CC /\ G e. CC ) -> ( E e. CC /\ F e. CC ) ) |
|
| 27 | 4 26 | syl | |- ( ph -> ( E e. CC /\ F e. CC ) ) |
| 28 | 3simpa | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A e. V /\ B e. W ) ) |
|
| 29 | 5 28 | syl | |- ( ph -> ( A e. V /\ B e. W ) ) |
| 30 | 1 2 27 29 6 | sumpr | |- ( ph -> sum_ k e. { A , B } D = ( E + F ) ) |
| 31 | 5 | simp3d | |- ( ph -> C e. X ) |
| 32 | 4 | simp3d | |- ( ph -> G e. CC ) |
| 33 | 3 | sumsn | |- ( ( C e. X /\ G e. CC ) -> sum_ k e. { C } D = G ) |
| 34 | 31 32 33 | syl2anc | |- ( ph -> sum_ k e. { C } D = G ) |
| 35 | 30 34 | oveq12d | |- ( ph -> ( sum_ k e. { A , B } D + sum_ k e. { C } D ) = ( ( E + F ) + G ) ) |
| 36 | 25 35 | eqtrd | |- ( ph -> sum_ k e. { A , B , C } D = ( ( E + F ) + G ) ) |