This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumpr.1 | ⊢ ( 𝑘 = 𝐴 → 𝐶 = 𝐷 ) | |
| sumpr.2 | ⊢ ( 𝑘 = 𝐵 → 𝐶 = 𝐸 ) | ||
| sumpr.3 | ⊢ ( 𝜑 → ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) ) | ||
| sumpr.4 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) | ||
| sumpr.5 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
| Assertion | sumpr | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 + 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumpr.1 | ⊢ ( 𝑘 = 𝐴 → 𝐶 = 𝐷 ) | |
| 2 | sumpr.2 | ⊢ ( 𝑘 = 𝐵 → 𝐶 = 𝐸 ) | |
| 3 | sumpr.3 | ⊢ ( 𝜑 → ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) ) | |
| 4 | sumpr.4 | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) | |
| 5 | sumpr.5 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
| 6 | disjsn2 | ⊢ ( 𝐴 ≠ 𝐵 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → ( { 𝐴 } ∩ { 𝐵 } ) = ∅ ) |
| 8 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) ) |
| 10 | prfi | ⊢ { 𝐴 , 𝐵 } ∈ Fin | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ Fin ) |
| 12 | 1 | eleq1d | ⊢ ( 𝑘 = 𝐴 → ( 𝐶 ∈ ℂ ↔ 𝐷 ∈ ℂ ) ) |
| 13 | 2 | eleq1d | ⊢ ( 𝑘 = 𝐵 → ( 𝐶 ∈ ℂ ↔ 𝐸 ∈ ℂ ) ) |
| 14 | 12 13 | ralprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 ∈ ℂ ↔ ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) ) ) |
| 15 | 4 14 | syl | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 ∈ ℂ ↔ ( 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ) ) ) |
| 16 | 3 15 | mpbird | ⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 ∈ ℂ ) |
| 17 | 16 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝐴 , 𝐵 } ) → 𝐶 ∈ ℂ ) |
| 18 | 7 9 11 17 | fsumsplit | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) ) |
| 19 | 4 | simpld | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 20 | 3 | simpld | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 21 | 1 | sumsn | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ ℂ ) → Σ 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 ) |
| 22 | 19 20 21 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 } 𝐶 = 𝐷 ) |
| 23 | 4 | simprd | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 24 | 3 | simprd | ⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 25 | 2 | sumsn | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ ℂ ) → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 ) |
| 26 | 23 24 25 | syl2anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐸 ) |
| 27 | 22 26 | oveq12d | ⊢ ( 𝜑 → ( Σ 𝑘 ∈ { 𝐴 } 𝐶 + Σ 𝑘 ∈ { 𝐵 } 𝐶 ) = ( 𝐷 + 𝐸 ) ) |
| 28 | 18 27 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 + 𝐸 ) ) |