This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum over a pair is the sum of the elements. (Contributed by Thierry Arnoux, 12-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumpr.1 | ||
| sumpr.2 | |||
| sumpr.3 | |||
| sumpr.4 | |||
| sumpr.5 | |||
| Assertion | sumpr |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumpr.1 | ||
| 2 | sumpr.2 | ||
| 3 | sumpr.3 | ||
| 4 | sumpr.4 | ||
| 5 | sumpr.5 | ||
| 6 | disjsn2 | ||
| 7 | 5 6 | syl | |
| 8 | df-pr | ||
| 9 | 8 | a1i | |
| 10 | prfi | ||
| 11 | 10 | a1i | |
| 12 | 1 | eleq1d | |
| 13 | 2 | eleq1d | |
| 14 | 12 13 | ralprg | |
| 15 | 4 14 | syl | |
| 16 | 3 15 | mpbird | |
| 17 | 16 | r19.21bi | |
| 18 | 7 9 11 17 | fsumsplit | |
| 19 | 4 | simpld | |
| 20 | 3 | simpld | |
| 21 | 1 | sumsn | |
| 22 | 19 20 21 | syl2anc | |
| 23 | 4 | simprd | |
| 24 | 3 | simprd | |
| 25 | 2 | sumsn | |
| 26 | 23 24 25 | syl2anc | |
| 27 | 22 26 | oveq12d | |
| 28 | 18 27 | eqtrd |