This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express a function F whose value B may not always be a set in terms of another function G for which sethood is guaranteed. (Note that (IB ) is just shorthand for if ( B e. V , B , (/) ) , and it is always a set by fvex .) Note also that these functions are not the same; wherever B ( C ) is not a set, C is not in the domain of F (so it evaluates to the empty set), but C is in the domain of G , and G ( C ) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptex.1 | |- F = ( x e. A |-> B ) |
|
| fvmptex.2 | |- G = ( x e. A |-> ( _I ` B ) ) |
||
| Assertion | fvmptex | |- ( F ` C ) = ( G ` C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptex.1 | |- F = ( x e. A |-> B ) |
|
| 2 | fvmptex.2 | |- G = ( x e. A |-> ( _I ` B ) ) |
|
| 3 | csbeq1 | |- ( y = C -> [_ y / x ]_ B = [_ C / x ]_ B ) |
|
| 4 | nfcv | |- F/_ y B |
|
| 5 | nfcsb1v | |- F/_ x [_ y / x ]_ B |
|
| 6 | csbeq1a | |- ( x = y -> B = [_ y / x ]_ B ) |
|
| 7 | 4 5 6 | cbvmpt | |- ( x e. A |-> B ) = ( y e. A |-> [_ y / x ]_ B ) |
| 8 | 1 7 | eqtri | |- F = ( y e. A |-> [_ y / x ]_ B ) |
| 9 | 3 8 | fvmpti | |- ( C e. A -> ( F ` C ) = ( _I ` [_ C / x ]_ B ) ) |
| 10 | 3 | fveq2d | |- ( y = C -> ( _I ` [_ y / x ]_ B ) = ( _I ` [_ C / x ]_ B ) ) |
| 11 | nfcv | |- F/_ y ( _I ` B ) |
|
| 12 | nfcv | |- F/_ x _I |
|
| 13 | 12 5 | nffv | |- F/_ x ( _I ` [_ y / x ]_ B ) |
| 14 | 6 | fveq2d | |- ( x = y -> ( _I ` B ) = ( _I ` [_ y / x ]_ B ) ) |
| 15 | 11 13 14 | cbvmpt | |- ( x e. A |-> ( _I ` B ) ) = ( y e. A |-> ( _I ` [_ y / x ]_ B ) ) |
| 16 | 2 15 | eqtri | |- G = ( y e. A |-> ( _I ` [_ y / x ]_ B ) ) |
| 17 | fvex | |- ( _I ` [_ C / x ]_ B ) e. _V |
|
| 18 | 10 16 17 | fvmpt | |- ( C e. A -> ( G ` C ) = ( _I ` [_ C / x ]_ B ) ) |
| 19 | 9 18 | eqtr4d | |- ( C e. A -> ( F ` C ) = ( G ` C ) ) |
| 20 | 1 | dmmptss | |- dom F C_ A |
| 21 | 20 | sseli | |- ( C e. dom F -> C e. A ) |
| 22 | ndmfv | |- ( -. C e. dom F -> ( F ` C ) = (/) ) |
|
| 23 | 21 22 | nsyl5 | |- ( -. C e. A -> ( F ` C ) = (/) ) |
| 24 | fvex | |- ( _I ` B ) e. _V |
|
| 25 | 24 2 | dmmpti | |- dom G = A |
| 26 | 25 | eleq2i | |- ( C e. dom G <-> C e. A ) |
| 27 | ndmfv | |- ( -. C e. dom G -> ( G ` C ) = (/) ) |
|
| 28 | 26 27 | sylnbir | |- ( -. C e. A -> ( G ` C ) = (/) ) |
| 29 | 23 28 | eqtr4d | |- ( -. C e. A -> ( F ` C ) = ( G ` C ) ) |
| 30 | 19 29 | pm2.61i | |- ( F ` C ) = ( G ` C ) |