This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgraph of a simple graph is a simple graph. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subusgr | |- ( ( G e. USGraph /\ S SubGraph G ) -> S e. USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` S ) = ( Vtx ` S ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | eqid | |- ( iEdg ` S ) = ( iEdg ` S ) |
|
| 4 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 5 | eqid | |- ( Edg ` S ) = ( Edg ` S ) |
|
| 6 | 1 2 3 4 5 | subgrprop2 | |- ( S SubGraph G -> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
| 7 | usgruhgr | |- ( G e. USGraph -> G e. UHGraph ) |
|
| 8 | subgruhgrfun | |- ( ( G e. UHGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
|
| 9 | 7 8 | sylan | |- ( ( G e. USGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
| 10 | 9 | ancoms | |- ( ( S SubGraph G /\ G e. USGraph ) -> Fun ( iEdg ` S ) ) |
| 11 | 10 | funfnd | |- ( ( S SubGraph G /\ G e. USGraph ) -> ( iEdg ` S ) Fn dom ( iEdg ` S ) ) |
| 12 | 11 | adantl | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) -> ( iEdg ` S ) Fn dom ( iEdg ` S ) ) |
| 13 | simplrl | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> S SubGraph G ) |
|
| 14 | usgrumgr | |- ( G e. USGraph -> G e. UMGraph ) |
|
| 15 | 14 | adantl | |- ( ( S SubGraph G /\ G e. USGraph ) -> G e. UMGraph ) |
| 16 | 15 | adantl | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) -> G e. UMGraph ) |
| 17 | 16 | adantr | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> G e. UMGraph ) |
| 18 | simpr | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> x e. dom ( iEdg ` S ) ) |
|
| 19 | 1 3 | subumgredg2 | |- ( ( S SubGraph G /\ G e. UMGraph /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` x ) e. { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
| 20 | 13 17 18 19 | syl3anc | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` x ) e. { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
| 21 | 20 | ralrimiva | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) -> A. x e. dom ( iEdg ` S ) ( ( iEdg ` S ) ` x ) e. { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
| 22 | fnfvrnss | |- ( ( ( iEdg ` S ) Fn dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` S ) ( ( iEdg ` S ) ` x ) e. { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) -> ran ( iEdg ` S ) C_ { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
|
| 23 | 12 21 22 | syl2anc | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) -> ran ( iEdg ` S ) C_ { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
| 24 | df-f | |- ( ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } <-> ( ( iEdg ` S ) Fn dom ( iEdg ` S ) /\ ran ( iEdg ` S ) C_ { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
|
| 25 | 12 23 24 | sylanbrc | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) -> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
| 26 | simp2 | |- ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) -> ( iEdg ` S ) C_ ( iEdg ` G ) ) |
|
| 27 | 2 4 | usgrfs | |- ( G e. USGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { y e. ~P ( Vtx ` G ) | ( # ` y ) = 2 } ) |
| 28 | df-f1 | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { y e. ~P ( Vtx ` G ) | ( # ` y ) = 2 } <-> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { y e. ~P ( Vtx ` G ) | ( # ` y ) = 2 } /\ Fun `' ( iEdg ` G ) ) ) |
|
| 29 | ffun | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { y e. ~P ( Vtx ` G ) | ( # ` y ) = 2 } -> Fun ( iEdg ` G ) ) |
|
| 30 | 29 | anim1i | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { y e. ~P ( Vtx ` G ) | ( # ` y ) = 2 } /\ Fun `' ( iEdg ` G ) ) -> ( Fun ( iEdg ` G ) /\ Fun `' ( iEdg ` G ) ) ) |
| 31 | 28 30 | sylbi | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { y e. ~P ( Vtx ` G ) | ( # ` y ) = 2 } -> ( Fun ( iEdg ` G ) /\ Fun `' ( iEdg ` G ) ) ) |
| 32 | 27 31 | syl | |- ( G e. USGraph -> ( Fun ( iEdg ` G ) /\ Fun `' ( iEdg ` G ) ) ) |
| 33 | 32 | adantl | |- ( ( S SubGraph G /\ G e. USGraph ) -> ( Fun ( iEdg ` G ) /\ Fun `' ( iEdg ` G ) ) ) |
| 34 | 26 33 | anim12ci | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) -> ( ( Fun ( iEdg ` G ) /\ Fun `' ( iEdg ` G ) ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) |
| 35 | df-3an | |- ( ( Fun ( iEdg ` G ) /\ Fun `' ( iEdg ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) <-> ( ( Fun ( iEdg ` G ) /\ Fun `' ( iEdg ` G ) ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) |
|
| 36 | 34 35 | sylibr | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) -> ( Fun ( iEdg ` G ) /\ Fun `' ( iEdg ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) ) |
| 37 | f1ssf1 | |- ( ( Fun ( iEdg ` G ) /\ Fun `' ( iEdg ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) ) -> Fun `' ( iEdg ` S ) ) |
|
| 38 | 36 37 | syl | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) -> Fun `' ( iEdg ` S ) ) |
| 39 | df-f1 | |- ( ( iEdg ` S ) : dom ( iEdg ` S ) -1-1-> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } <-> ( ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } /\ Fun `' ( iEdg ` S ) ) ) |
|
| 40 | 25 38 39 | sylanbrc | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) -> ( iEdg ` S ) : dom ( iEdg ` S ) -1-1-> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
| 41 | subgrv | |- ( S SubGraph G -> ( S e. _V /\ G e. _V ) ) |
|
| 42 | 1 3 | isusgrs | |- ( S e. _V -> ( S e. USGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) -1-1-> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
| 43 | 42 | adantr | |- ( ( S e. _V /\ G e. _V ) -> ( S e. USGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) -1-1-> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
| 44 | 41 43 | syl | |- ( S SubGraph G -> ( S e. USGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) -1-1-> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
| 45 | 44 | adantr | |- ( ( S SubGraph G /\ G e. USGraph ) -> ( S e. USGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) -1-1-> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
| 46 | 45 | adantl | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) -> ( S e. USGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) -1-1-> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
| 47 | 40 46 | mpbird | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. USGraph ) ) -> S e. USGraph ) |
| 48 | 47 | ex | |- ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) -> ( ( S SubGraph G /\ G e. USGraph ) -> S e. USGraph ) ) |
| 49 | 6 48 | syl | |- ( S SubGraph G -> ( ( S SubGraph G /\ G e. USGraph ) -> S e. USGraph ) ) |
| 50 | 49 | anabsi8 | |- ( ( G e. USGraph /\ S SubGraph G ) -> S e. USGraph ) |