This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgraph of a simple graph is a simple graph. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 27-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subusgr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ USGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) | |
| 6 | 1 2 3 4 5 | subgrprop2 | ⊢ ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
| 7 | usgruhgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) | |
| 8 | subgruhgrfun | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) | |
| 9 | 7 8 | sylan | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) |
| 10 | 9 | ancoms | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → Fun ( iEdg ‘ 𝑆 ) ) |
| 11 | 10 | funfnd | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ) |
| 13 | simplrl | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑆 SubGraph 𝐺 ) | |
| 14 | usgrumgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → 𝐺 ∈ UMGraph ) |
| 16 | 15 | adantl | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → 𝐺 ∈ UMGraph ) |
| 17 | 16 | adantr | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝐺 ∈ UMGraph ) |
| 18 | simpr | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) | |
| 19 | 1 3 | subumgredg2 | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ UMGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 20 | 13 17 18 19 | syl3anc | ⊢ ( ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) ∧ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 21 | 20 | ralrimiva | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 22 | fnfvrnss | ⊢ ( ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ dom ( iEdg ‘ 𝑆 ) ( ( iEdg ‘ 𝑆 ) ‘ 𝑥 ) ∈ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) → ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) | |
| 23 | 12 21 22 | syl2anc | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 24 | df-f | ⊢ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( ( iEdg ‘ 𝑆 ) Fn dom ( iEdg ‘ 𝑆 ) ∧ ran ( iEdg ‘ 𝑆 ) ⊆ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) | |
| 25 | 12 23 24 | sylanbrc | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 26 | simp2 | ⊢ ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) | |
| 27 | 2 4 | usgrfs | ⊢ ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑦 ) = 2 } ) |
| 28 | df-f1 | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑦 ) = 2 } ↔ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑦 ) = 2 } ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ) | |
| 29 | ffun | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑦 ) = 2 } → Fun ( iEdg ‘ 𝐺 ) ) | |
| 30 | 29 | anim1i | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑦 ) = 2 } ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) → ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ) |
| 31 | 28 30 | sylbi | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑦 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑦 ) = 2 } → ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ) |
| 32 | 27 31 | syl | ⊢ ( 𝐺 ∈ USGraph → ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ) |
| 33 | 32 | adantl | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ) |
| 34 | 26 33 | anim12ci | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ( ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) |
| 35 | df-3an | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ↔ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) | |
| 36 | 34 35 | sylibr | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) ) |
| 37 | f1ssf1 | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ Fun ◡ ( iEdg ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ) → Fun ◡ ( iEdg ‘ 𝑆 ) ) | |
| 38 | 36 37 | syl | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → Fun ◡ ( iEdg ‘ 𝑆 ) ) |
| 39 | df-f1 | ⊢ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ↔ ( ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) ⟶ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ∧ Fun ◡ ( iEdg ‘ 𝑆 ) ) ) | |
| 40 | 25 38 39 | sylanbrc | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) |
| 41 | subgrv | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) ) | |
| 42 | 1 3 | isusgrs | ⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ USGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
| 43 | 42 | adantr | ⊢ ( ( 𝑆 ∈ V ∧ 𝐺 ∈ V ) → ( 𝑆 ∈ USGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
| 44 | 41 43 | syl | ⊢ ( 𝑆 SubGraph 𝐺 → ( 𝑆 ∈ USGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
| 45 | 44 | adantr | ⊢ ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → ( 𝑆 ∈ USGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
| 46 | 45 | adantl | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → ( 𝑆 ∈ USGraph ↔ ( iEdg ‘ 𝑆 ) : dom ( iEdg ‘ 𝑆 ) –1-1→ { 𝑒 ∈ 𝒫 ( Vtx ‘ 𝑆 ) ∣ ( ♯ ‘ 𝑒 ) = 2 } ) ) |
| 47 | 40 46 | mpbird | ⊢ ( ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ∧ ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) ) → 𝑆 ∈ USGraph ) |
| 48 | 47 | ex | ⊢ ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → 𝑆 ∈ USGraph ) ) |
| 49 | 6 48 | syl | ⊢ ( 𝑆 SubGraph 𝐺 → ( ( 𝑆 SubGraph 𝐺 ∧ 𝐺 ∈ USGraph ) → 𝑆 ∈ USGraph ) ) |
| 50 | 49 | anabsi8 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑆 SubGraph 𝐺 ) → 𝑆 ∈ USGraph ) |