This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset of an injective function is injective. (Contributed by AV, 20-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ssf1 | |- ( ( Fun F /\ Fun `' F /\ G C_ F ) -> Fun `' G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funssres | |- ( ( Fun F /\ G C_ F ) -> ( F |` dom G ) = G ) |
|
| 2 | funres11 | |- ( Fun `' F -> Fun `' ( F |` dom G ) ) |
|
| 3 | cnveq | |- ( G = ( F |` dom G ) -> `' G = `' ( F |` dom G ) ) |
|
| 4 | 3 | funeqd | |- ( G = ( F |` dom G ) -> ( Fun `' G <-> Fun `' ( F |` dom G ) ) ) |
| 5 | 2 4 | imbitrrid | |- ( G = ( F |` dom G ) -> ( Fun `' F -> Fun `' G ) ) |
| 6 | 5 | eqcoms | |- ( ( F |` dom G ) = G -> ( Fun `' F -> Fun `' G ) ) |
| 7 | 1 6 | syl | |- ( ( Fun F /\ G C_ F ) -> ( Fun `' F -> Fun `' G ) ) |
| 8 | 7 | ex | |- ( Fun F -> ( G C_ F -> ( Fun `' F -> Fun `' G ) ) ) |
| 9 | 8 | com23 | |- ( Fun F -> ( Fun `' F -> ( G C_ F -> Fun `' G ) ) ) |
| 10 | 9 | 3imp | |- ( ( Fun F /\ Fun `' F /\ G C_ F ) -> Fun `' G ) |