This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An undirected pseudograph is an undirected hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 10-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | upgruhgr | |- ( G e. UPGraph -> G e. UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 1 2 | upgrf | |- ( G e. UPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 4 | ssrab2 | |- { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } C_ ( ~P ( Vtx ` G ) \ { (/) } ) |
|
| 5 | fss | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } /\ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } C_ ( ~P ( Vtx ` G ) \ { (/) } ) ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
|
| 6 | 3 4 5 | sylancl | |- ( G e. UPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 7 | 1 2 | isuhgr | |- ( G e. UPGraph -> ( G e. UHGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
| 8 | 6 7 | mpbird | |- ( G e. UPGraph -> G e. UHGraph ) |