This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subgreldmiedg | |- ( ( S SubGraph G /\ X e. dom ( iEdg ` S ) ) -> X e. dom ( iEdg ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` S ) = ( Vtx ` S ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | eqid | |- ( iEdg ` S ) = ( iEdg ` S ) |
|
| 4 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 5 | eqid | |- ( Edg ` S ) = ( Edg ` S ) |
|
| 6 | 1 2 3 4 5 | subgrprop2 | |- ( S SubGraph G -> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
| 7 | dmss | |- ( ( iEdg ` S ) C_ ( iEdg ` G ) -> dom ( iEdg ` S ) C_ dom ( iEdg ` G ) ) |
|
| 8 | 7 | 3ad2ant2 | |- ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) -> dom ( iEdg ` S ) C_ dom ( iEdg ` G ) ) |
| 9 | 8 | sseld | |- ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) -> ( X e. dom ( iEdg ` S ) -> X e. dom ( iEdg ` G ) ) ) |
| 10 | 6 9 | syl | |- ( S SubGraph G -> ( X e. dom ( iEdg ` S ) -> X e. dom ( iEdg ` G ) ) ) |
| 11 | 10 | imp | |- ( ( S SubGraph G /\ X e. dom ( iEdg ` S ) ) -> X e. dom ( iEdg ` G ) ) |