This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgraph of a multigraph is a multigraph. (Contributed by AV, 26-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subumgr | |- ( ( G e. UMGraph /\ S SubGraph G ) -> S e. UMGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` S ) = ( Vtx ` S ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | eqid | |- ( iEdg ` S ) = ( iEdg ` S ) |
|
| 4 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 5 | eqid | |- ( Edg ` S ) = ( Edg ` S ) |
|
| 6 | 1 2 3 4 5 | subgrprop2 | |- ( S SubGraph G -> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
| 7 | umgruhgr | |- ( G e. UMGraph -> G e. UHGraph ) |
|
| 8 | subgruhgrfun | |- ( ( G e. UHGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
|
| 9 | 7 8 | sylan | |- ( ( G e. UMGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
| 10 | 9 | ancoms | |- ( ( S SubGraph G /\ G e. UMGraph ) -> Fun ( iEdg ` S ) ) |
| 11 | 10 | funfnd | |- ( ( S SubGraph G /\ G e. UMGraph ) -> ( iEdg ` S ) Fn dom ( iEdg ` S ) ) |
| 12 | 11 | adantl | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) -> ( iEdg ` S ) Fn dom ( iEdg ` S ) ) |
| 13 | simplrl | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> S SubGraph G ) |
|
| 14 | simplrr | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> G e. UMGraph ) |
|
| 15 | simpr | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> x e. dom ( iEdg ` S ) ) |
|
| 16 | 1 3 | subumgredg2 | |- ( ( S SubGraph G /\ G e. UMGraph /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` x ) e. { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
| 17 | 13 14 15 16 | syl3anc | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` x ) e. { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
| 18 | 17 | ralrimiva | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) -> A. x e. dom ( iEdg ` S ) ( ( iEdg ` S ) ` x ) e. { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
| 19 | fnfvrnss | |- ( ( ( iEdg ` S ) Fn dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` S ) ( ( iEdg ` S ) ` x ) e. { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) -> ran ( iEdg ` S ) C_ { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
|
| 20 | 12 18 19 | syl2anc | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) -> ran ( iEdg ` S ) C_ { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
| 21 | df-f | |- ( ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } <-> ( ( iEdg ` S ) Fn dom ( iEdg ` S ) /\ ran ( iEdg ` S ) C_ { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
|
| 22 | 12 20 21 | sylanbrc | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) -> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) |
| 23 | subgrv | |- ( S SubGraph G -> ( S e. _V /\ G e. _V ) ) |
|
| 24 | 1 3 | isumgrs | |- ( S e. _V -> ( S e. UMGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
| 25 | 24 | adantr | |- ( ( S e. _V /\ G e. _V ) -> ( S e. UMGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
| 26 | 23 25 | syl | |- ( S SubGraph G -> ( S e. UMGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
| 27 | 26 | ad2antrl | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) -> ( S e. UMGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> { e e. ~P ( Vtx ` S ) | ( # ` e ) = 2 } ) ) |
| 28 | 22 27 | mpbird | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UMGraph ) ) -> S e. UMGraph ) |
| 29 | 28 | ex | |- ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) -> ( ( S SubGraph G /\ G e. UMGraph ) -> S e. UMGraph ) ) |
| 30 | 6 29 | syl | |- ( S SubGraph G -> ( ( S SubGraph G /\ G e. UMGraph ) -> S e. UMGraph ) ) |
| 31 | 30 | anabsi8 | |- ( ( G e. UMGraph /\ S SubGraph G ) -> S e. UMGraph ) |