This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subgraph of a hypergraph is a hypergraph. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 21-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subuhgr | |- ( ( G e. UHGraph /\ S SubGraph G ) -> S e. UHGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` S ) = ( Vtx ` S ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | eqid | |- ( iEdg ` S ) = ( iEdg ` S ) |
|
| 4 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 5 | eqid | |- ( Edg ` S ) = ( Edg ` S ) |
|
| 6 | 1 2 3 4 5 | subgrprop2 | |- ( S SubGraph G -> ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) ) |
| 7 | subgruhgrfun | |- ( ( G e. UHGraph /\ S SubGraph G ) -> Fun ( iEdg ` S ) ) |
|
| 8 | 7 | ancoms | |- ( ( S SubGraph G /\ G e. UHGraph ) -> Fun ( iEdg ` S ) ) |
| 9 | 8 | adantl | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UHGraph ) ) -> Fun ( iEdg ` S ) ) |
| 10 | 9 | funfnd | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UHGraph ) ) -> ( iEdg ` S ) Fn dom ( iEdg ` S ) ) |
| 11 | simplrr | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UHGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> G e. UHGraph ) |
|
| 12 | simplrl | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UHGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> S SubGraph G ) |
|
| 13 | simpr | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UHGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> x e. dom ( iEdg ` S ) ) |
|
| 14 | 1 3 11 12 13 | subgruhgredgd | |- ( ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UHGraph ) ) /\ x e. dom ( iEdg ` S ) ) -> ( ( iEdg ` S ) ` x ) e. ( ~P ( Vtx ` S ) \ { (/) } ) ) |
| 15 | 14 | ralrimiva | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UHGraph ) ) -> A. x e. dom ( iEdg ` S ) ( ( iEdg ` S ) ` x ) e. ( ~P ( Vtx ` S ) \ { (/) } ) ) |
| 16 | fnfvrnss | |- ( ( ( iEdg ` S ) Fn dom ( iEdg ` S ) /\ A. x e. dom ( iEdg ` S ) ( ( iEdg ` S ) ` x ) e. ( ~P ( Vtx ` S ) \ { (/) } ) ) -> ran ( iEdg ` S ) C_ ( ~P ( Vtx ` S ) \ { (/) } ) ) |
|
| 17 | 10 15 16 | syl2anc | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UHGraph ) ) -> ran ( iEdg ` S ) C_ ( ~P ( Vtx ` S ) \ { (/) } ) ) |
| 18 | df-f | |- ( ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) <-> ( ( iEdg ` S ) Fn dom ( iEdg ` S ) /\ ran ( iEdg ` S ) C_ ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
|
| 19 | 10 17 18 | sylanbrc | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UHGraph ) ) -> ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) |
| 20 | subgrv | |- ( S SubGraph G -> ( S e. _V /\ G e. _V ) ) |
|
| 21 | 1 3 | isuhgr | |- ( S e. _V -> ( S e. UHGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
| 22 | 21 | adantr | |- ( ( S e. _V /\ G e. _V ) -> ( S e. UHGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
| 23 | 20 22 | syl | |- ( S SubGraph G -> ( S e. UHGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
| 24 | 23 | adantr | |- ( ( S SubGraph G /\ G e. UHGraph ) -> ( S e. UHGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
| 25 | 24 | adantl | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UHGraph ) ) -> ( S e. UHGraph <-> ( iEdg ` S ) : dom ( iEdg ` S ) --> ( ~P ( Vtx ` S ) \ { (/) } ) ) ) |
| 26 | 19 25 | mpbird | |- ( ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) /\ ( S SubGraph G /\ G e. UHGraph ) ) -> S e. UHGraph ) |
| 27 | 26 | ex | |- ( ( ( Vtx ` S ) C_ ( Vtx ` G ) /\ ( iEdg ` S ) C_ ( iEdg ` G ) /\ ( Edg ` S ) C_ ~P ( Vtx ` S ) ) -> ( ( S SubGraph G /\ G e. UHGraph ) -> S e. UHGraph ) ) |
| 28 | 6 27 | syl | |- ( S SubGraph G -> ( ( S SubGraph G /\ G e. UHGraph ) -> S e. UHGraph ) ) |
| 29 | 28 | anabsi8 | |- ( ( G e. UHGraph /\ S SubGraph G ) -> S e. UHGraph ) |