This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge of a multigraph has exactly two ends. (Contributed by AV, 24-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumgr.v | |- V = ( Vtx ` G ) |
|
| isumgr.e | |- E = ( iEdg ` G ) |
||
| Assertion | umgredg2 | |- ( ( G e. UMGraph /\ X e. dom E ) -> ( # ` ( E ` X ) ) = 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumgr.v | |- V = ( Vtx ` G ) |
|
| 2 | isumgr.e | |- E = ( iEdg ` G ) |
|
| 3 | 1 2 | umgrf | |- ( G e. UMGraph -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) |
| 4 | 3 | ffvelcdmda | |- ( ( G e. UMGraph /\ X e. dom E ) -> ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } ) |
| 5 | fveqeq2 | |- ( x = ( E ` X ) -> ( ( # ` x ) = 2 <-> ( # ` ( E ` X ) ) = 2 ) ) |
|
| 6 | 5 | elrab | |- ( ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } <-> ( ( E ` X ) e. ~P V /\ ( # ` ( E ` X ) ) = 2 ) ) |
| 7 | 6 | simprbi | |- ( ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } -> ( # ` ( E ` X ) ) = 2 ) |
| 8 | 4 7 | syl | |- ( ( G e. UMGraph /\ X e. dom E ) -> ( # ` ( E ` X ) ) = 2 ) |