This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm in a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgngp.h | |- H = ( G |`s A ) |
|
| subgnm.n | |- N = ( norm ` G ) |
||
| subgnm.m | |- M = ( norm ` H ) |
||
| Assertion | subgnm | |- ( A e. ( SubGrp ` G ) -> M = ( N |` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgngp.h | |- H = ( G |`s A ) |
|
| 2 | subgnm.n | |- N = ( norm ` G ) |
|
| 3 | subgnm.m | |- M = ( norm ` H ) |
|
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | 4 | subgss | |- ( A e. ( SubGrp ` G ) -> A C_ ( Base ` G ) ) |
| 6 | 5 | resmptd | |- ( A e. ( SubGrp ` G ) -> ( ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) |` A ) = ( x e. A |-> ( x ( dist ` G ) ( 0g ` G ) ) ) ) |
| 7 | 1 | subgbas | |- ( A e. ( SubGrp ` G ) -> A = ( Base ` H ) ) |
| 8 | eqid | |- ( dist ` G ) = ( dist ` G ) |
|
| 9 | 1 8 | ressds | |- ( A e. ( SubGrp ` G ) -> ( dist ` G ) = ( dist ` H ) ) |
| 10 | eqidd | |- ( A e. ( SubGrp ` G ) -> x = x ) |
|
| 11 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 12 | 1 11 | subg0 | |- ( A e. ( SubGrp ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 13 | 9 10 12 | oveq123d | |- ( A e. ( SubGrp ` G ) -> ( x ( dist ` G ) ( 0g ` G ) ) = ( x ( dist ` H ) ( 0g ` H ) ) ) |
| 14 | 7 13 | mpteq12dv | |- ( A e. ( SubGrp ` G ) -> ( x e. A |-> ( x ( dist ` G ) ( 0g ` G ) ) ) = ( x e. ( Base ` H ) |-> ( x ( dist ` H ) ( 0g ` H ) ) ) ) |
| 15 | 6 14 | eqtr2d | |- ( A e. ( SubGrp ` G ) -> ( x e. ( Base ` H ) |-> ( x ( dist ` H ) ( 0g ` H ) ) ) = ( ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) |` A ) ) |
| 16 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 17 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 18 | eqid | |- ( dist ` H ) = ( dist ` H ) |
|
| 19 | 3 16 17 18 | nmfval | |- M = ( x e. ( Base ` H ) |-> ( x ( dist ` H ) ( 0g ` H ) ) ) |
| 20 | 2 4 11 8 | nmfval | |- N = ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) |
| 21 | 20 | reseq1i | |- ( N |` A ) = ( ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) |` A ) |
| 22 | 15 19 21 | 3eqtr4g | |- ( A e. ( SubGrp ` G ) -> M = ( N |` A ) ) |