This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal subclass of non-limit ordinals is a class of natural numbers. Exercise 7 of TakeutiZaring p. 42. (Contributed by NM, 2-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssnlim | |- ( ( Ord A /\ A C_ { x e. On | -. Lim x } ) -> A C_ _om ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limom | |- Lim _om |
|
| 2 | ssel | |- ( A C_ { x e. On | -. Lim x } -> ( _om e. A -> _om e. { x e. On | -. Lim x } ) ) |
|
| 3 | limeq | |- ( x = _om -> ( Lim x <-> Lim _om ) ) |
|
| 4 | 3 | notbid | |- ( x = _om -> ( -. Lim x <-> -. Lim _om ) ) |
| 5 | 4 | elrab | |- ( _om e. { x e. On | -. Lim x } <-> ( _om e. On /\ -. Lim _om ) ) |
| 6 | 5 | simprbi | |- ( _om e. { x e. On | -. Lim x } -> -. Lim _om ) |
| 7 | 2 6 | syl6 | |- ( A C_ { x e. On | -. Lim x } -> ( _om e. A -> -. Lim _om ) ) |
| 8 | 1 7 | mt2i | |- ( A C_ { x e. On | -. Lim x } -> -. _om e. A ) |
| 9 | 8 | adantl | |- ( ( Ord A /\ A C_ { x e. On | -. Lim x } ) -> -. _om e. A ) |
| 10 | ordom | |- Ord _om |
|
| 11 | ordtri1 | |- ( ( Ord A /\ Ord _om ) -> ( A C_ _om <-> -. _om e. A ) ) |
|
| 12 | 10 11 | mpan2 | |- ( Ord A -> ( A C_ _om <-> -. _om e. A ) ) |
| 13 | 12 | adantr | |- ( ( Ord A /\ A C_ { x e. On | -. Lim x } ) -> ( A C_ _om <-> -. _om e. A ) ) |
| 14 | 9 13 | mpbird | |- ( ( Ord A /\ A C_ { x e. On | -. Lim x } ) -> A C_ _om ) |