This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015) (Proof shortened by BJ, 16-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omsinds.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| omsinds.2 | |- ( x = A -> ( ph <-> ch ) ) |
||
| omsinds.3 | |- ( x e. _om -> ( A. y e. x ps -> ph ) ) |
||
| Assertion | omsinds | |- ( A e. _om -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omsinds.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | omsinds.2 | |- ( x = A -> ( ph <-> ch ) ) |
|
| 3 | omsinds.3 | |- ( x e. _om -> ( A. y e. x ps -> ph ) ) |
|
| 4 | omsson | |- _om C_ On |
|
| 5 | epweon | |- _E We On |
|
| 6 | wess | |- ( _om C_ On -> ( _E We On -> _E We _om ) ) |
|
| 7 | 4 5 6 | mp2 | |- _E We _om |
| 8 | epse | |- _E Se _om |
|
| 9 | trom | |- Tr _om |
|
| 10 | trpred | |- ( ( Tr _om /\ x e. _om ) -> Pred ( _E , _om , x ) = x ) |
|
| 11 | 9 10 | mpan | |- ( x e. _om -> Pred ( _E , _om , x ) = x ) |
| 12 | 11 | raleqdv | |- ( x e. _om -> ( A. y e. Pred ( _E , _om , x ) ps <-> A. y e. x ps ) ) |
| 13 | 12 3 | sylbid | |- ( x e. _om -> ( A. y e. Pred ( _E , _om , x ) ps -> ph ) ) |
| 14 | 7 8 1 2 13 | wfis3 | |- ( A e. _om -> ch ) |