This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal subclass of non-limit ordinals is a class of natural numbers. Exercise 7 of TakeutiZaring p. 42. (Contributed by NM, 2-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssnlim | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } ) → 𝐴 ⊆ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limom | ⊢ Lim ω | |
| 2 | ssel | ⊢ ( 𝐴 ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } → ( ω ∈ 𝐴 → ω ∈ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } ) ) | |
| 3 | limeq | ⊢ ( 𝑥 = ω → ( Lim 𝑥 ↔ Lim ω ) ) | |
| 4 | 3 | notbid | ⊢ ( 𝑥 = ω → ( ¬ Lim 𝑥 ↔ ¬ Lim ω ) ) |
| 5 | 4 | elrab | ⊢ ( ω ∈ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } ↔ ( ω ∈ On ∧ ¬ Lim ω ) ) |
| 6 | 5 | simprbi | ⊢ ( ω ∈ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } → ¬ Lim ω ) |
| 7 | 2 6 | syl6 | ⊢ ( 𝐴 ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } → ( ω ∈ 𝐴 → ¬ Lim ω ) ) |
| 8 | 1 7 | mt2i | ⊢ ( 𝐴 ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } → ¬ ω ∈ 𝐴 ) |
| 9 | 8 | adantl | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } ) → ¬ ω ∈ 𝐴 ) |
| 10 | ordom | ⊢ Ord ω | |
| 11 | ordtri1 | ⊢ ( ( Ord 𝐴 ∧ Ord ω ) → ( 𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴 ) ) | |
| 12 | 10 11 | mpan2 | ⊢ ( Ord 𝐴 → ( 𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴 ) ) |
| 13 | 12 | adantr | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } ) → ( 𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴 ) ) |
| 14 | 9 13 | mpbird | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ⊆ { 𝑥 ∈ On ∣ ¬ Lim 𝑥 } ) → 𝐴 ⊆ ω ) |