This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shne0.1 | |- A e. SH |
|
| Assertion | shne0i | |- ( A =/= 0H <-> E. x e. A x =/= 0h ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shne0.1 | |- A e. SH |
|
| 2 | df-ne | |- ( A =/= 0H <-> -. A = 0H ) |
|
| 3 | df-rex | |- ( E. x e. A -. x e. 0H <-> E. x ( x e. A /\ -. x e. 0H ) ) |
|
| 4 | nss | |- ( -. A C_ 0H <-> E. x ( x e. A /\ -. x e. 0H ) ) |
|
| 5 | shle0 | |- ( A e. SH -> ( A C_ 0H <-> A = 0H ) ) |
|
| 6 | 1 5 | ax-mp | |- ( A C_ 0H <-> A = 0H ) |
| 7 | 6 | notbii | |- ( -. A C_ 0H <-> -. A = 0H ) |
| 8 | 3 4 7 | 3bitr2ri | |- ( -. A = 0H <-> E. x e. A -. x e. 0H ) |
| 9 | elch0 | |- ( x e. 0H <-> x = 0h ) |
|
| 10 | 9 | necon3bbii | |- ( -. x e. 0H <-> x =/= 0h ) |
| 11 | 10 | rexbii | |- ( E. x e. A -. x e. 0H <-> E. x e. A x =/= 0h ) |
| 12 | 2 8 11 | 3bitri | |- ( A =/= 0H <-> E. x e. A x =/= 0h ) |