This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An analogue of pwex for the subcategory subset relation: The collection of subcategory subsets of a given set J is a set. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sscpwex | |- { h | h C_cat J } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex | |- ( ~P U. ran J ^pm dom J ) e. _V |
|
| 2 | brssc | |- ( h C_cat J <-> E. t ( J Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) |
|
| 3 | simpl | |- ( ( J Fn ( t X. t ) /\ ( s e. ~P t /\ h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) -> J Fn ( t X. t ) ) |
|
| 4 | vex | |- t e. _V |
|
| 5 | 4 4 | xpex | |- ( t X. t ) e. _V |
| 6 | fnex | |- ( ( J Fn ( t X. t ) /\ ( t X. t ) e. _V ) -> J e. _V ) |
|
| 7 | 3 5 6 | sylancl | |- ( ( J Fn ( t X. t ) /\ ( s e. ~P t /\ h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) -> J e. _V ) |
| 8 | rnexg | |- ( J e. _V -> ran J e. _V ) |
|
| 9 | uniexg | |- ( ran J e. _V -> U. ran J e. _V ) |
|
| 10 | pwexg | |- ( U. ran J e. _V -> ~P U. ran J e. _V ) |
|
| 11 | 7 8 9 10 | 4syl | |- ( ( J Fn ( t X. t ) /\ ( s e. ~P t /\ h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) -> ~P U. ran J e. _V ) |
| 12 | fndm | |- ( J Fn ( t X. t ) -> dom J = ( t X. t ) ) |
|
| 13 | 12 | adantr | |- ( ( J Fn ( t X. t ) /\ ( s e. ~P t /\ h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) -> dom J = ( t X. t ) ) |
| 14 | 13 5 | eqeltrdi | |- ( ( J Fn ( t X. t ) /\ ( s e. ~P t /\ h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) -> dom J e. _V ) |
| 15 | ss2ixp | |- ( A. x e. ( s X. s ) ~P ( J ` x ) C_ ~P U. ran J -> X_ x e. ( s X. s ) ~P ( J ` x ) C_ X_ x e. ( s X. s ) ~P U. ran J ) |
|
| 16 | fvssunirn | |- ( J ` x ) C_ U. ran J |
|
| 17 | 16 | sspwi | |- ~P ( J ` x ) C_ ~P U. ran J |
| 18 | 17 | a1i | |- ( x e. ( s X. s ) -> ~P ( J ` x ) C_ ~P U. ran J ) |
| 19 | 15 18 | mprg | |- X_ x e. ( s X. s ) ~P ( J ` x ) C_ X_ x e. ( s X. s ) ~P U. ran J |
| 20 | simprr | |- ( ( J Fn ( t X. t ) /\ ( s e. ~P t /\ h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) -> h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) |
|
| 21 | 19 20 | sselid | |- ( ( J Fn ( t X. t ) /\ ( s e. ~P t /\ h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) -> h e. X_ x e. ( s X. s ) ~P U. ran J ) |
| 22 | vex | |- h e. _V |
|
| 23 | 22 | elixpconst | |- ( h e. X_ x e. ( s X. s ) ~P U. ran J <-> h : ( s X. s ) --> ~P U. ran J ) |
| 24 | 21 23 | sylib | |- ( ( J Fn ( t X. t ) /\ ( s e. ~P t /\ h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) -> h : ( s X. s ) --> ~P U. ran J ) |
| 25 | elpwi | |- ( s e. ~P t -> s C_ t ) |
|
| 26 | 25 | ad2antrl | |- ( ( J Fn ( t X. t ) /\ ( s e. ~P t /\ h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) -> s C_ t ) |
| 27 | xpss12 | |- ( ( s C_ t /\ s C_ t ) -> ( s X. s ) C_ ( t X. t ) ) |
|
| 28 | 26 26 27 | syl2anc | |- ( ( J Fn ( t X. t ) /\ ( s e. ~P t /\ h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) -> ( s X. s ) C_ ( t X. t ) ) |
| 29 | 28 13 | sseqtrrd | |- ( ( J Fn ( t X. t ) /\ ( s e. ~P t /\ h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) -> ( s X. s ) C_ dom J ) |
| 30 | elpm2r | |- ( ( ( ~P U. ran J e. _V /\ dom J e. _V ) /\ ( h : ( s X. s ) --> ~P U. ran J /\ ( s X. s ) C_ dom J ) ) -> h e. ( ~P U. ran J ^pm dom J ) ) |
|
| 31 | 11 14 24 29 30 | syl22anc | |- ( ( J Fn ( t X. t ) /\ ( s e. ~P t /\ h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) -> h e. ( ~P U. ran J ^pm dom J ) ) |
| 32 | 31 | rexlimdvaa | |- ( J Fn ( t X. t ) -> ( E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( J ` x ) -> h e. ( ~P U. ran J ^pm dom J ) ) ) |
| 33 | 32 | imp | |- ( ( J Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) -> h e. ( ~P U. ran J ^pm dom J ) ) |
| 34 | 33 | exlimiv | |- ( E. t ( J Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( J ` x ) ) -> h e. ( ~P U. ran J ^pm dom J ) ) |
| 35 | 2 34 | sylbi | |- ( h C_cat J -> h e. ( ~P U. ran J ^pm dom J ) ) |
| 36 | 35 | abssi | |- { h | h C_cat J } C_ ( ~P U. ran J ^pm dom J ) |
| 37 | 1 36 | ssexi | |- { h | h C_cat J } e. _V |