This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brssc | |- ( H C_cat J <-> E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscrel | |- Rel C_cat |
|
| 2 | 1 | brrelex12i | |- ( H C_cat J -> ( H e. _V /\ J e. _V ) ) |
| 3 | vex | |- t e. _V |
|
| 4 | 3 3 | xpex | |- ( t X. t ) e. _V |
| 5 | fnex | |- ( ( J Fn ( t X. t ) /\ ( t X. t ) e. _V ) -> J e. _V ) |
|
| 6 | 4 5 | mpan2 | |- ( J Fn ( t X. t ) -> J e. _V ) |
| 7 | elex | |- ( H e. X_ x e. ( s X. s ) ~P ( J ` x ) -> H e. _V ) |
|
| 8 | 7 | rexlimivw | |- ( E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) -> H e. _V ) |
| 9 | 6 8 | anim12ci | |- ( ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) -> ( H e. _V /\ J e. _V ) ) |
| 10 | 9 | exlimiv | |- ( E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) -> ( H e. _V /\ J e. _V ) ) |
| 11 | simpr | |- ( ( h = H /\ j = J ) -> j = J ) |
|
| 12 | 11 | fneq1d | |- ( ( h = H /\ j = J ) -> ( j Fn ( t X. t ) <-> J Fn ( t X. t ) ) ) |
| 13 | simpl | |- ( ( h = H /\ j = J ) -> h = H ) |
|
| 14 | 11 | fveq1d | |- ( ( h = H /\ j = J ) -> ( j ` x ) = ( J ` x ) ) |
| 15 | 14 | pweqd | |- ( ( h = H /\ j = J ) -> ~P ( j ` x ) = ~P ( J ` x ) ) |
| 16 | 15 | ixpeq2dv | |- ( ( h = H /\ j = J ) -> X_ x e. ( s X. s ) ~P ( j ` x ) = X_ x e. ( s X. s ) ~P ( J ` x ) ) |
| 17 | 13 16 | eleq12d | |- ( ( h = H /\ j = J ) -> ( h e. X_ x e. ( s X. s ) ~P ( j ` x ) <-> H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) |
| 18 | 17 | rexbidv | |- ( ( h = H /\ j = J ) -> ( E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) <-> E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) |
| 19 | 12 18 | anbi12d | |- ( ( h = H /\ j = J ) -> ( ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) ) <-> ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) ) |
| 20 | 19 | exbidv | |- ( ( h = H /\ j = J ) -> ( E. t ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) ) <-> E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) ) |
| 21 | df-ssc | |- C_cat = { <. h , j >. | E. t ( j Fn ( t X. t ) /\ E. s e. ~P t h e. X_ x e. ( s X. s ) ~P ( j ` x ) ) } |
|
| 22 | 20 21 | brabga | |- ( ( H e. _V /\ J e. _V ) -> ( H C_cat J <-> E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) ) |
| 23 | 2 10 22 | pm5.21nii | |- ( H C_cat J <-> E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ x e. ( s X. s ) ~P ( J ` x ) ) ) |