This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for a complete metric space. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmspropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| cmspropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| cmspropd.3 | |- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( B X. B ) ) ) |
||
| cmspropd.4 | |- ( ph -> ( TopOpen ` K ) = ( TopOpen ` L ) ) |
||
| Assertion | cmspropd | |- ( ph -> ( K e. CMetSp <-> L e. CMetSp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmspropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | cmspropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | cmspropd.3 | |- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( B X. B ) ) ) |
|
| 4 | cmspropd.4 | |- ( ph -> ( TopOpen ` K ) = ( TopOpen ` L ) ) |
|
| 5 | 1 2 3 4 | mspropd | |- ( ph -> ( K e. MetSp <-> L e. MetSp ) ) |
| 6 | 1 | sqxpeqd | |- ( ph -> ( B X. B ) = ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 7 | 6 | reseq2d | |- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
| 8 | 3 7 | eqtr3d | |- ( ph -> ( ( dist ` L ) |` ( B X. B ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
| 9 | 2 | sqxpeqd | |- ( ph -> ( B X. B ) = ( ( Base ` L ) X. ( Base ` L ) ) ) |
| 10 | 9 | reseq2d | |- ( ph -> ( ( dist ` L ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 11 | 8 10 | eqtr3d | |- ( ph -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 12 | 1 2 | eqtr3d | |- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
| 13 | 12 | fveq2d | |- ( ph -> ( CMet ` ( Base ` K ) ) = ( CMet ` ( Base ` L ) ) ) |
| 14 | 11 13 | eleq12d | |- ( ph -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) <-> ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) e. ( CMet ` ( Base ` L ) ) ) ) |
| 15 | 5 14 | anbi12d | |- ( ph -> ( ( K e. MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) <-> ( L e. MetSp /\ ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) e. ( CMet ` ( Base ` L ) ) ) ) ) |
| 16 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 17 | eqid | |- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
|
| 18 | 16 17 | iscms | |- ( K e. CMetSp <-> ( K e. MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( CMet ` ( Base ` K ) ) ) ) |
| 19 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 20 | eqid | |- ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) |
|
| 21 | 19 20 | iscms | |- ( L e. CMetSp <-> ( L e. MetSp /\ ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) e. ( CMet ` ( Base ` L ) ) ) ) |
| 22 | 15 18 21 | 3bitr4g | |- ( ph -> ( K e. CMetSp <-> L e. CMetSp ) ) |