This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring module over a complete normed division ring is a Banach space. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rlmbn | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( ringLMod ` R ) e. Ban ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. CMetSp ) |
|
| 2 | cmsms | |- ( R e. CMetSp -> R e. MetSp ) |
|
| 3 | mstps | |- ( R e. MetSp -> R e. TopSp ) |
|
| 4 | 1 2 3 | 3syl | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. TopSp ) |
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | eqid | |- ( TopOpen ` R ) = ( TopOpen ` R ) |
|
| 7 | 5 6 | tpsuni | |- ( R e. TopSp -> ( Base ` R ) = U. ( TopOpen ` R ) ) |
| 8 | 4 7 | syl | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( Base ` R ) = U. ( TopOpen ` R ) ) |
| 9 | 6 | tpstop | |- ( R e. TopSp -> ( TopOpen ` R ) e. Top ) |
| 10 | eqid | |- U. ( TopOpen ` R ) = U. ( TopOpen ` R ) |
|
| 11 | 10 | topcld | |- ( ( TopOpen ` R ) e. Top -> U. ( TopOpen ` R ) e. ( Clsd ` ( TopOpen ` R ) ) ) |
| 12 | 4 9 11 | 3syl | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> U. ( TopOpen ` R ) e. ( Clsd ` ( TopOpen ` R ) ) ) |
| 13 | 8 12 | eqeltrd | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( Base ` R ) e. ( Clsd ` ( TopOpen ` R ) ) ) |
| 14 | 5 | ressid | |- ( R e. NrmRing -> ( R |`s ( Base ` R ) ) = R ) |
| 15 | 14 | 3ad2ant1 | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( R |`s ( Base ` R ) ) = R ) |
| 16 | simp2 | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. DivRing ) |
|
| 17 | 15 16 | eqeltrd | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( R |`s ( Base ` R ) ) e. DivRing ) |
| 18 | simp1 | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. NrmRing ) |
|
| 19 | nrgring | |- ( R e. NrmRing -> R e. Ring ) |
|
| 20 | 19 | 3ad2ant1 | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> R e. Ring ) |
| 21 | 5 | subrgid | |- ( R e. Ring -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 22 | 20 21 | syl | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( Base ` R ) e. ( SubRing ` R ) ) |
| 23 | rlmval | |- ( ringLMod ` R ) = ( ( subringAlg ` R ) ` ( Base ` R ) ) |
|
| 24 | 23 6 | srabn | |- ( ( R e. NrmRing /\ R e. CMetSp /\ ( Base ` R ) e. ( SubRing ` R ) ) -> ( ( ringLMod ` R ) e. Ban <-> ( ( Base ` R ) e. ( Clsd ` ( TopOpen ` R ) ) /\ ( R |`s ( Base ` R ) ) e. DivRing ) ) ) |
| 25 | 18 1 22 24 | syl3anc | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( ( ringLMod ` R ) e. Ban <-> ( ( Base ` R ) e. ( Clsd ` ( TopOpen ` R ) ) /\ ( R |`s ( Base ` R ) ) e. DivRing ) ) ) |
| 26 | 13 17 25 | mpbir2and | |- ( ( R e. NrmRing /\ R e. DivRing /\ R e. CMetSp ) -> ( ringLMod ` R ) e. Ban ) |