This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isbn.1 | |- F = ( Scalar ` W ) |
|
| Assertion | isbn | |- ( W e. Ban <-> ( W e. NrmVec /\ W e. CMetSp /\ F e. CMetSp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isbn.1 | |- F = ( Scalar ` W ) |
|
| 2 | elin | |- ( W e. ( NrmVec i^i CMetSp ) <-> ( W e. NrmVec /\ W e. CMetSp ) ) |
|
| 3 | 2 | anbi1i | |- ( ( W e. ( NrmVec i^i CMetSp ) /\ F e. CMetSp ) <-> ( ( W e. NrmVec /\ W e. CMetSp ) /\ F e. CMetSp ) ) |
| 4 | fveq2 | |- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( w = W -> ( Scalar ` w ) = F ) |
| 6 | 5 | eleq1d | |- ( w = W -> ( ( Scalar ` w ) e. CMetSp <-> F e. CMetSp ) ) |
| 7 | df-bn | |- Ban = { w e. ( NrmVec i^i CMetSp ) | ( Scalar ` w ) e. CMetSp } |
|
| 8 | 6 7 | elrab2 | |- ( W e. Ban <-> ( W e. ( NrmVec i^i CMetSp ) /\ F e. CMetSp ) ) |
| 9 | df-3an | |- ( ( W e. NrmVec /\ W e. CMetSp /\ F e. CMetSp ) <-> ( ( W e. NrmVec /\ W e. CMetSp ) /\ F e. CMetSp ) ) |
|
| 10 | 3 8 9 | 3bitr4i | |- ( W e. Ban <-> ( W e. NrmVec /\ W e. CMetSp /\ F e. CMetSp ) ) |