This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reim0 | |- ( A e. RR -> ( Im ` A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | it0e0 | |- ( _i x. 0 ) = 0 |
|
| 3 | 2 | oveq2i | |- ( A + ( _i x. 0 ) ) = ( A + 0 ) |
| 4 | addrid | |- ( A e. CC -> ( A + 0 ) = A ) |
|
| 5 | 3 4 | eqtrid | |- ( A e. CC -> ( A + ( _i x. 0 ) ) = A ) |
| 6 | 1 5 | syl | |- ( A e. RR -> ( A + ( _i x. 0 ) ) = A ) |
| 7 | 6 | fveq2d | |- ( A e. RR -> ( Im ` ( A + ( _i x. 0 ) ) ) = ( Im ` A ) ) |
| 8 | 0re | |- 0 e. RR |
|
| 9 | crim | |- ( ( A e. RR /\ 0 e. RR ) -> ( Im ` ( A + ( _i x. 0 ) ) ) = 0 ) |
|
| 10 | 8 9 | mpan2 | |- ( A e. RR -> ( Im ` ( A + ( _i x. 0 ) ) ) = 0 ) |
| 11 | 7 10 | eqtr3d | |- ( A e. RR -> ( Im ` A ) = 0 ) |